These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 29208719)

  • 1. Effect of removing Kupffer cells on nanoparticle tumor delivery.
    Tavares AJ; Poon W; Zhang YN; Dai Q; Besla R; Ding D; Ouyang B; Li A; Chen J; Zheng G; Robbins C; Chan WCW
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):E10871-E10880. PubMed ID: 29208719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Tumor Barriers on Nanoparticle Delivery to Macrophages.
    Ouyang B; Kingston BR; Poon W; Zhang YN; Lin ZP; Syed AM; Couture-Senécal J; Chan WCW
    Mol Pharm; 2022 Jun; 19(6):1917-1925. PubMed ID: 35319220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding nanoparticle-liver interactions in nanomedicine.
    He Y; Wang Y; Wang L; Jiang W; Wilhelm S
    Expert Opin Drug Deliv; 2024 Jun; 21(6):829-843. PubMed ID: 38946471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency.
    Sykes EA; Chen J; Zheng G; Chan WC
    ACS Nano; 2014 Jun; 8(6):5696-706. PubMed ID: 24821383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased Nanoparticle Delivery to Brain Tumors by Autocatalytic Priming for Improved Treatment and Imaging.
    Han L; Kong DK; Zheng MQ; Murikinati S; Ma C; Yuan P; Li L; Tian D; Cai Q; Ye C; Holden D; Park JH; Gao X; Thomas JL; Grutzendler J; Carson RE; Huang Y; Piepmeier JM; Zhou J
    ACS Nano; 2016 Apr; 10(4):4209-18. PubMed ID: 26967254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remodeling Tumor Vasculature to Enhance Delivery of Intermediate-Sized Nanoparticles.
    Jiang W; Huang Y; An Y; Kim BY
    ACS Nano; 2015 Sep; 9(9):8689-96. PubMed ID: 26212564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macrophage-Mediated Exocytosis of Elongated Nanoparticles Improves Hepatic Excretion and Cancer Phototherapy.
    Oh N; Kim Y; Kweon HS; Oh WY; Park JH
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28450-28457. PubMed ID: 30067899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery.
    Parveen S; Sahoo SK
    Eur J Pharmacol; 2011 Nov; 670(2-3):372-83. PubMed ID: 21951969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of integrated cancer nanomedicine in overcoming drug resistance.
    Iyer AK; Singh A; Ganta S; Amiji MM
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1784-802. PubMed ID: 23880506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting of Hepatic Macrophages by Therapeutic Nanoparticles.
    Colino CI; Lanao JM; Gutierrez-Millan C
    Front Immunol; 2020; 11():218. PubMed ID: 32194546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of Kupffer cells to liposome accumulation in the liver.
    Samuelsson E; Shen H; Blanco E; Ferrari M; Wolfram J
    Colloids Surf B Biointerfaces; 2017 Oct; 158():356-362. PubMed ID: 28719856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying the Ligand-Coated Nanoparticle Delivery to Cancer Cells in Solid Tumors.
    Dai Q; Wilhelm S; Ding D; Syed AM; Sindhwani S; Zhang Y; Chen YY; MacMillan P; Chan WCW
    ACS Nano; 2018 Aug; 12(8):8423-8435. PubMed ID: 30016073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current Approaches for Improving Intratumoral Accumulation and Distribution of Nanomedicines.
    Durymanov MO; Rosenkranz AA; Sobolev AS
    Theranostics; 2015; 5(9):1007-20. PubMed ID: 26155316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotype Determines Nanoparticle Uptake by Human Macrophages from Liver and Blood.
    MacParland SA; Tsoi KM; Ouyang B; Ma XZ; Manuel J; Fawaz A; Ostrowski MA; Alman BA; Zilman A; Chan WC; McGilvray ID
    ACS Nano; 2017 Mar; 11(3):2428-2443. PubMed ID: 28040885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges in realizing selectivity for nanoparticle biodistribution and clearance: lessons from gold nanoparticles.
    Haute DV; Berlin JM
    Ther Deliv; 2017 Aug; 8(9):763-774. PubMed ID: 28825391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic Review of Cancer Targeting by Nanoparticles Revealed a Global Association between Accumulation in Tumors and Spleen.
    Drozdov AS; Nikitin PI; Rozenberg JM
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes.
    Lunov O; Syrovets T; Röcker C; Tron K; Nienhaus GU; Rasche V; Mailänder V; Landfester K; Simmet T
    Biomaterials; 2010 Dec; 31(34):9015-22. PubMed ID: 20739059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring nanoparticle designs to target cancer based on tumor pathophysiology.
    Sykes EA; Dai Q; Sarsons CD; Chen J; Rocheleau JV; Hwang DM; Zheng G; Cramb DT; Rinker KD; Chan WC
    Proc Natl Acad Sci U S A; 2016 Mar; 113(9):E1142-51. PubMed ID: 26884153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor heterogeneity and nanoparticle-mediated tumor targeting: the importance of delivery system personalization.
    Swetha KL; Roy A
    Drug Deliv Transl Res; 2018 Oct; 8(5):1508-1526. PubMed ID: 30128797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational Design of Cancer Nanomedicine: Nanoproperty Integration and Synchronization.
    Sun Q; Zhou Z; Qiu N; Shen Y
    Adv Mater; 2017 Apr; 29(14):. PubMed ID: 28234430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.