These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29208891)

  • 41. Structure-activity relationships of new cyanothiophene inhibitors of the essential peptidoglycan biosynthesis enzyme MurF.
    Hrast M; Turk S; Sosič I; Knez D; Randall CP; Barreteau H; Contreras-Martel C; Dessen A; O'Neill AJ; Mengin-Lecreulx D; Blanot D; Gobec S
    Eur J Med Chem; 2013 Aug; 66():32-45. PubMed ID: 23786712
    [TBL] [Abstract][Full Text] [Related]  

  • 42. On the mechanism of action of the antibiotic O-carbamyld-serine in Streptococcus faecalis.
    Lynch JL; Neuhaus FC
    J Bacteriol; 1966 Jan; 91(1):449-60. PubMed ID: 4955253
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inhibitors of alanine racemase enzyme: a review.
    Azam MA; Jayaram U
    J Enzyme Inhib Med Chem; 2016 Aug; 31(4):517-26. PubMed ID: 26024289
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanism of D-cycloserine action: transport mutants for D-alanine, D-cycloserine, and glycine.
    Wargel RJ; Hadur CA; Neuhaus FC
    J Bacteriol; 1971 Mar; 105(3):1028-35. PubMed ID: 4926674
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Studies on Escherichia coli enzymes involved in the synthesis of uridine diphosphate-N-acetyl-muramyl-pentapeptide.
    Lugtenberg EJ
    J Bacteriol; 1972 Apr; 110(1):26-34. PubMed ID: 4552992
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A MurF inhibitor that disrupts cell wall biosynthesis in Escherichia coli.
    Baum EZ; Crespo-Carbone SM; Klinger A; Foleno BD; Turchi I; Macielag M; Bush K
    Antimicrob Agents Chemother; 2007 Dec; 51(12):4420-6. PubMed ID: 17908943
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Burkholderia pseudomallei d-alanine-d-alanine ligase; detailed characterisation and assessment of a potential antibiotic drug target.
    Díaz-Sáez L; Torrie LS; McElroy SP; Gray D; Hunter WN
    FEBS J; 2019 Nov; 286(22):4509-4524. PubMed ID: 31260169
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetic and genetic analyses of D-cycloserine inhibition and resistance in Escherichia coli.
    Curtiss R; Charamella LJ; Berg CM; Harris PE
    J Bacteriol; 1965 Nov; 90(5):1238-50. PubMed ID: 5321479
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 6-Arylpyrido[2,3-d]pyrimidines as novel ATP-competitive inhibitors of bacterial D-alanine:D-alanine ligase.
    Škedelj V; Arsovska E; Tomašić T; Kroflič A; Hodnik V; Hrast M; Bešter-Rogač M; Anderluh G; Gobec S; Bostock J; Chopra I; O'Neill AJ; Randall C; Zega A
    PLoS One; 2012; 7(8):e39922. PubMed ID: 22876277
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 1-(2-Hydroxybenzoyl)-thiosemicarbazides are promising antimicrobial agents targeting d-alanine-d-alanine ligase in bacterio.
    Ameryckx A; Thabault L; Pochet L; Leimanis S; Poupaert JH; Wouters J; Joris B; Van Bambeke F; Frédérick R
    Eur J Med Chem; 2018 Nov; 159():324-338. PubMed ID: 30300845
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Function of the D-alanine:D-alanine ligase lid loop: a molecular modeling and bioactivity study.
    Hrast M; Vehar B; Turk S; Konc J; Gobec S; Janežič D
    J Med Chem; 2012 Aug; 55(15):6849-56. PubMed ID: 22803830
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Glutamate Racemase Is the Primary Target of β-Chloro-d-Alanine in Mycobacterium tuberculosis.
    Prosser GA; Rodenburg A; Khoury H; de Chiara C; Howell S; Snijders AP; de Carvalho LP
    Antimicrob Agents Chemother; 2016 Oct; 60(10):6091-9. PubMed ID: 27480853
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural evidence that alanine racemase from a D-cycloserine-producing microorganism exhibits resistance to its own product.
    Noda M; Matoba Y; Kumagai T; Sugiyama M
    J Biol Chem; 2004 Oct; 279(44):46153-61. PubMed ID: 15302886
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of Escherichia coli D-cycloserine transport and resistant mutants.
    Baisa G; Stabo NJ; Welch RA
    J Bacteriol; 2013 Apr; 195(7):1389-99. PubMed ID: 23316042
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Subunit interaction of monomeric alanine racemases from four Shigella species in catalytic reaction.
    Yokoigawa K; Okubo Y; Soda K
    FEMS Microbiol Lett; 2003 Apr; 221(2):263-7. PubMed ID: 12725937
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analysis of the peptidoglycan of Rickettsia prowazekii.
    Pang H; Winkler HH
    J Bacteriol; 1994 Feb; 176(3):923-6. PubMed ID: 8300546
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular cloning of a D-cycloserine resistance gene from D-cycloserine-producing Streptomyces garyphalus.
    Matsuo H; Kumagai T; Mori K; Sugiyama M
    J Antibiot (Tokyo); 2003 Sep; 56(9):762-7. PubMed ID: 14632285
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Discovery of new inhibitors of D-alanine:D-alanine ligase by structure-based virtual screening.
    Kovac A; Konc J; Vehar B; Bostock JM; Chopra I; Janezic D; Gobec S
    J Med Chem; 2008 Dec; 51(23):7442-8. PubMed ID: 19053785
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structure-guided design and synthesis of ATP-competitive N-acyl-substituted sulfamide d-alanine-d-alanine ligase inhibitors.
    Becker R; Pederick JL; Dawes EG; Bruning JB; Abell AD
    Bioorg Med Chem; 2023 Dec; 96():117509. PubMed ID: 37948922
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel assay method for an amino acid racemase reaction based on circular dichroism.
    Noda M; Matoba Y; Kumagai T; Sugiyama M
    Biochem J; 2005 Jul; 389(Pt 2):491-6. PubMed ID: 15796715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.