These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 29208986)

  • 1. Immune tuning scaffold for the local induction of a pro-regenerative environment.
    Corradetti B; Taraballi F; Corbo C; Cabrera F; Pandolfi L; Minardi S; Wang X; Van Eps J; Bauza G; Weiner B; Tasciotti E
    Sci Rep; 2017 Dec; 7(1):17030. PubMed ID: 29208986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-linked collagen-chondroitin sulfate-hyaluronic acid imitating extracellular matrix as scaffold for dermal tissue engineering.
    Wang W; Zhang M; Lu W; Zhang X; Ma D; Rong X; Yu C; Jin Y
    Tissue Eng Part C Methods; 2010 Apr; 16(2):269-79. PubMed ID: 19530938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vivo Analysis of the Biocompatibility and Immune Response of Jellyfish Collagen Scaffolds and its Suitability for Bone Regeneration.
    Flaig I; Radenković M; Najman S; Pröhl A; Jung O; Barbeck M
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32630456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfection of autologous host cells in vivo using gene activated collagen scaffolds incorporating star-polypeptides.
    Walsh DP; Raftery RM; Castaño IM; Murphy R; Cavanagh B; Heise A; O'Brien FJ; Cryan SA
    J Control Release; 2019 Jun; 304():191-203. PubMed ID: 31075346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The reparative response to cross-linked collagen-based scaffolds in a rat spinal cord gap model.
    Cholas RH; Hsu HP; Spector M
    Biomaterials; 2012 Mar; 33(7):2050-9. PubMed ID: 22182744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment of penetrating brain injury in a rat model using collagen scaffolds incorporating soluble Nogo receptor.
    Elias PZ; Spector M
    J Tissue Eng Regen Med; 2015 Feb; 9(2):137-50. PubMed ID: 23038669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the moisturizing properties of collagen film by surface grafting of chondroitin sulfate for corneal tissue engineering.
    Liu Y; Lv H; Ren L; Xue G; Wang Y
    J Biomater Sci Polym Ed; 2016; 27(8):758-72. PubMed ID: 26948819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of collagen-glycosaminoglycan blended nanofibrous scaffolds and their biological properties.
    Zhong S; Teo WE; Zhu X; Beuerman R; Ramakrishna S; Yung LY
    Biomacromolecules; 2005; 6(6):2998-3004. PubMed ID: 16283719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive genetic analysis of early host body reactions to the bioactive and bio-inert porous scaffolds.
    Ehashi T; Takemura T; Hanagata N; Minowa T; Kobayashi H; Ishihara K; Yamaoka T
    PLoS One; 2014; 9(1):e85132. PubMed ID: 24454803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate modulus of 3D-printed scaffolds regulates the regenerative response in subcutaneous implants through the macrophage phenotype and Wnt signaling.
    Guo R; Merkel AR; Sterling JA; Davidson JM; Guelcher SA
    Biomaterials; 2015 Dec; 73():85-95. PubMed ID: 26406449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printed Pericardium Hydrogels To Promote Wound Healing in Vascular Applications.
    Bracaglia LG; Messina M; Winston S; Kuo CY; Lerman M; Fisher JP
    Biomacromolecules; 2017 Nov; 18(11):3802-3811. PubMed ID: 28976740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering.
    Singh BN; Veeresh V; Mallick SP; Jain Y; Sinha S; Rastogi A; Srivastava P
    Int J Biol Macromol; 2019 Jul; 133():817-830. PubMed ID: 31002908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket.
    Nishida E; Miyaji H; Kato A; Takita H; Iwanaga T; Momose T; Ogawa K; Murakami S; Sugaya T; Kawanami M
    Int J Nanomedicine; 2016; 11():2265-77. PubMed ID: 27307729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An asymmetric chitosan scaffold for tendon tissue engineering: In vitro and in vivo evaluation with rat tendon stem/progenitor cells.
    Chen E; Yang L; Ye C; Zhang W; Ran J; Xue D; Wang Z; Pan Z; Hu Q
    Acta Biomater; 2018 Jun; 73():377-387. PubMed ID: 29678676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manufacture of a weakly denatured collagen fiber scaffold with excellent biocompatibility and space maintenance ability.
    Nakada A; Shigeno K; Sato T; Kobayashi T; Wakatsuki M; Uji M; Nakamura T
    Biomed Mater; 2013 Aug; 8(4):045010. PubMed ID: 23804650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and evaluation of gelatin/hyaluronic acid/chondroitin sulfate/asiatic acid based biopolymeric scaffold for the treatment of second-degree burn wounds - Wistar rat model study.
    A V T; Mohanty S; Dinda AK; Koul V
    Biomed Mater; 2020 Aug; 15(5):055016. PubMed ID: 32252033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tyrosinase-crosslinked, tissue adhesive and biomimetic alginate sulfate hydrogels for cartilage repair.
    Öztürk E; Stauber T; Levinson C; Cavalli E; Arlov Ø; Zenobi-Wong M
    Biomed Mater; 2020 Jun; 15(4):045019. PubMed ID: 32578533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in situ tissue engineering scaffold with growth factors combining angiogenesis and osteoimmunomodulatory functions for advanced periodontal bone regeneration.
    Ding T; Kang W; Li J; Yu L; Ge S
    J Nanobiotechnology; 2021 Aug; 19(1):247. PubMed ID: 34404409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chondroitin Sulfate Immobilized on a Biomimetic Scaffold Modulates Inflammation While Driving Chondrogenesis.
    Corradetti B; Taraballi F; Minardi S; Van Eps J; Cabrera F; Francis LW; Gazze SA; Ferrari M; Weiner BK; Tasciotti E
    Stem Cells Transl Med; 2016 May; 5(5):670-82. PubMed ID: 27013739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable fabrication of hydroxybutyl chitosan/oxidized chondroitin sulfate hydrogels by 3D bioprinting technique for cartilage tissue engineering.
    Li C; Wang K; Zhou X; Li T; Xu Y; Qiang L; Peng M; Xu Y; Xie L; He C; Wang B; Wang J
    Biomed Mater; 2019 Jan; 14(2):025006. PubMed ID: 30557856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.