These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 29209002)

  • 41. Membrane Interactions of hIAPP Monomer and Oligomer with Lipid Membranes by Molecular Dynamics Simulations.
    Zhang M; Ren B; Liu Y; Liang G; Sun Y; Xu L; Zheng J
    ACS Chem Neurosci; 2017 Aug; 8(8):1789-1800. PubMed ID: 28585804
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Arrestin-dependent internalization of rhodopsin-like G protein-coupled receptors.
    Wanka L; Behr V; Beck-Sickinger AG
    Biol Chem; 2022 Jan; 403(2):133-149. PubMed ID: 34036761
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Arrestin-Bound Rhodopsin: A Molecular Structure and its Impact on the Development of Biased GPCR Ligands.
    Möller D; Gmeiner P
    Angew Chem Int Ed Engl; 2015 Nov; 54(45):13166-8. PubMed ID: 26361376
    [No Abstract]   [Full Text] [Related]  

  • 44. G protein-coupled receptors self-assemble in dynamics simulations of model bilayers.
    Periole X; Huber T; Marrink SJ; Sakmar TP
    J Am Chem Soc; 2007 Aug; 129(33):10126-32. PubMed ID: 17658882
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular insight into the effect of lipid bilayer environments on thrombospondin-1 and calreticulin interactions.
    Wang L; Murphy-Ullrich JE; Song Y
    Biochemistry; 2014 Oct; 53(40):6309-22. PubMed ID: 25260145
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In silico study of the human rhodopsin and meta rhodopsin II/S-arrestin complexes: impact of single point mutations related to retina degenerative diseases.
    Mokarzel-Falcón L; Padrón-García JA; Carrasco-Velar R; Berry C; Montero-Cabrera LA
    Proteins; 2008 Mar; 70(4):1133-41. PubMed ID: 18175313
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-mass MALDI-MS unravels ligand-mediated G protein-coupling selectivity to GPCRs.
    Wu N; Olechwier AM; Brunner C; Edwards PC; Tsai CJ; Tate CG; Schertler GFX; Schneider G; Deupi X; Zenobi R; Ma P
    Proc Natl Acad Sci U S A; 2021 Aug; 118(31):. PubMed ID: 34326250
    [TBL] [Abstract][Full Text] [Related]  

  • 49. N-terminal and C-terminal domains of arrestin both contribute in binding to rhodopsin.
    Skegro D; Pulvermüller A; Krafft B; Granzin J; Hofmann KP; Büldt G; Schlesinger R
    Photochem Photobiol; 2007; 83(2):385-92. PubMed ID: 17132044
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oligomerization of G protein-coupled receptors: past, present, and future.
    Park PS; Filipek S; Wells JW; Palczewski K
    Biochemistry; 2004 Dec; 43(50):15643-56. PubMed ID: 15595821
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The role of arrestin alpha-helix I in receptor binding.
    Vishnivetskiy SA; Francis D; Van Eps N; Kim M; Hanson SM; Klug CS; Hubbell WL; Gurevich VV
    J Mol Biol; 2010 Jan; 395(1):42-54. PubMed ID: 19883657
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural Basis of Arrestin Selectivity for Active Phosphorylated G Protein-Coupled Receptors.
    Karnam PC; Vishnivetskiy SA; Gurevich VV
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830362
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Theoretical study of the interactions between the first transmembrane segment of NS2 protein and a POPC lipid bilayer.
    Hung HM; Nguyen VP; Ngo ST; Nguyen MT
    Biophys Chem; 2016 Oct; 217():1-7. PubMed ID: 27455027
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cryo-EM structure of human rhodopsin bound to an inhibitory G protein.
    Kang Y; Kuybeda O; de Waal PW; Mukherjee S; Van Eps N; Dutka P; Zhou XE; Bartesaghi A; Erramilli S; Morizumi T; Gu X; Yin Y; Liu P; Jiang Y; Meng X; Zhao G; Melcher K; Ernst OP; Kossiakoff AA; Subramaniam S; Xu HE
    Nature; 2018 Jun; 558(7711):553-558. PubMed ID: 29899450
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of Arrestin on the Photodecay of Bovine Rhodopsin.
    Chatterjee D; Eckert CE; Slavov C; Saxena K; Fürtig B; Sanders CR; Gurevich VV; Wachtveitl J; Schwalbe H
    Angew Chem Int Ed Engl; 2015 Nov; 54(46):13555-60. PubMed ID: 26383645
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rhodopsin TM6 can interact with two separate and distinct sites on arrestin: evidence for structural plasticity and multiple docking modes in arrestin-rhodopsin binding.
    Sinha A; Jones Brunette AM; Fay JF; Schafer CT; Farrens DL
    Biochemistry; 2014 May; 53(20):3294-307. PubMed ID: 24724832
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phosphorylation modulates the affinity of light-activated rhodopsin for G protein and arrestin.
    Gibson SK; Parkes JH; Liebman PA
    Biochemistry; 2000 May; 39(19):5738-49. PubMed ID: 10801324
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The finger loop as an activation sensor in arrestin.
    Vishnivetskiy SA; Huh EK; Gurevich EV; Gurevich VV
    J Neurochem; 2021 May; 157(4):1138-1152. PubMed ID: 33159335
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The membrane complex between transducin and dark-state rhodopsin exhibits large-amplitude interface dynamics on the sub-microsecond timescale: insights from all-atom MD simulations.
    Sgourakis NG; Garcia AE
    J Mol Biol; 2010 Apr; 398(1):161-73. PubMed ID: 20184892
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of regions of arrestin that bind to rhodopsin.
    Smith WC; McDowell JH; Dugger DR; Miller R; Arendt A; Popp MP; Hargrave PA
    Biochemistry; 1999 Mar; 38(9):2752-61. PubMed ID: 10052946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.