These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29209016)

  • 1. Direct measurement of Kramers turnover with a levitated nanoparticle.
    Rondin L; Gieseler J; Ricci F; Quidant R; Dellago C; Novotny L
    Nat Nanotechnol; 2017 Dec; 12(12):1130-1133. PubMed ID: 29209016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escape dynamics of active particles in multistable potentials.
    Militaru A; Innerbichler M; Frimmer M; Tebbenjohanns F; Novotny L; Dellago C
    Nat Commun; 2021 Apr; 12(1):2446. PubMed ID: 33907190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kramers escape rate in nonlinear diffusive media.
    JiangLin Z; Bao JD; Wenping G
    J Chem Phys; 2006 Jan; 124(2):024112. PubMed ID: 16422576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear mode coupling and synchronization of a vacuum-trapped nanoparticle.
    Gieseler J; Spasenović M; Novotny L; Quidant R
    Phys Rev Lett; 2014 Mar; 112(10):103603. PubMed ID: 24679293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusive model of protein folding dynamics with Kramers turnover in rate.
    Best RB; Hummer G
    Phys Rev Lett; 2006 Jun; 96(22):228104. PubMed ID: 16803349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpolation formula between very low and intermediate-to-high damping Kramers escape rates for single-domain ferromagnetic particles.
    Déjardin PM; Crothers DS; Coffey WT; McCarthy DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 1):021102. PubMed ID: 11308463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Developments in Kramers' Theory of Reaction Rates.
    Pollak E; Miret-Artés S
    Chemphyschem; 2023 Aug; 24(16):e202300272. PubMed ID: 37537153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous action potentials due to channel fluctuations.
    Chow CC; White JA
    Biophys J; 1996 Dec; 71(6):3013-21. PubMed ID: 8968572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction rate theory: what it was, where is it today, and where is it going?
    Pollak E; Talkner P
    Chaos; 2005 Jun; 15(2):26116. PubMed ID: 16035918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermally activated escape rate for a Brownian particle in a tilted periodic potential for all values of the dissipation.
    Coffey WT; Kalmykov YP; Titov SV; Mulligan BP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 1):061101. PubMed ID: 16906803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optically levitated nanoparticle as a model system for stochastic bistable dynamics.
    Ricci F; Rica RA; Spasenović M; Gieseler J; Rondin L; Novotny L; Quidant R
    Nat Commun; 2017 May; 8():15141. PubMed ID: 28485372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermally activated escape rate for a Brownian particle in a double-well potential for all values of the dissipation.
    Kalmykov YP; Coffey WT; Titov SV
    J Chem Phys; 2006 Jan; 124(2):024107. PubMed ID: 16422571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermally activated escape rate for the Brownian motion of a fixed axis rotator in a double well potential for all values of the dissipation.
    Coffey WT; Kalmykov YP; Titov SV
    J Chem Phys; 2004 May; 120(19):9199-211. PubMed ID: 15267857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cold Damping of an Optically Levitated Nanoparticle to Microkelvin Temperatures.
    Tebbenjohanns F; Frimmer M; Militaru A; Jain V; Novotny L
    Phys Rev Lett; 2019 Jun; 122(22):223601. PubMed ID: 31283294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detailed study of the direct numerical observation of the Kramers turnover in the LiNC⇌LiCN isomerization rate.
    García Müller PL; Hernandez R; Benito RM; Borondo F
    J Chem Phys; 2012 Nov; 137(20):204301. PubMed ID: 23205997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Measurement of Photon Recoil from a Levitated Nanoparticle.
    Jain V; Gieseler J; Moritz C; Dellago C; Quidant R; Novotny L
    Phys Rev Lett; 2016 Jun; 116(24):243601. PubMed ID: 27367388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic tunneling and metastable states during the somatic evolution of cancer.
    Ashcroft P; Michor F; Galla T
    Genetics; 2015 Apr; 199(4):1213-28. PubMed ID: 25624316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using the transient trajectories of an optically levitated nanoparticle to characterize a stochastic Duffing oscillator.
    Flajšmanová J; Šiler M; Jedlička P; Hrubý F; Brzobohatý O; Filip R; Zemánek P
    Sci Rep; 2020 Sep; 10(1):14436. PubMed ID: 32879371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scalable all-optical cold damping of levitated nanoparticles.
    Vijayan J; Zhang Z; Piotrowski J; Windey D; van der Laan F; Frimmer M; Novotny L
    Nat Nanotechnol; 2023 Jan; 18(1):49-54. PubMed ID: 36411375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colloidal adsorption at fluid interfaces: regime crossover from fast relaxation to physical aging.
    Colosqui CE; Morris JF; Koplik J
    Phys Rev Lett; 2013 Jul; 111(2):028302. PubMed ID: 23889450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.