These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 29209176)

  • 21. Projection of sensory neurons from a homeotic mutant appendage, Antennapedia, in Drosophila melanogaster.
    Stocker RF; Edwards JS; Palka J; Schubiger G
    Dev Biol; 1976 Sep; 52(2):210-20. PubMed ID: 12194434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neuronal projections and putative interaction of multimodal inputs in the subesophageal ganglion in the blowfly, Phormia regina.
    Maeda T; Tamotsu S; Iwasaki M; Nisimura T; Shimohigashi M; Hojo MK; Ozaki M
    Chem Senses; 2014 Jun; 39(5):391-401. PubMed ID: 24718417
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Projection patterns of different types of antennal sensilla in the antennal glomeruli of Drosophila melanogaster.
    Stocker RF; Singh RN; Schorderet M; Siddiqi O
    Cell Tissue Res; 1983; 232(2):237-48. PubMed ID: 6411344
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The olfactory reception of acetic acid and ionotropic receptors in the Oriental armyworm, Mythimna separata Walker.
    Tang R; Jiang NJ; Ning C; Li GC; Huang LQ; Wang CZ
    Insect Biochem Mol Biol; 2020 Mar; 118():103312. PubMed ID: 31904488
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A diffusible signal attracts olfactory sensory axons toward their target in the developing brain of the moth.
    Oland LA; Pott WM; Howard CT; Inlow M; Buckingham J
    J Neurobiol; 2003 Jul; 56(1):24-40. PubMed ID: 12767030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The neural mechanisms of antennal positioning in flying moths.
    Krishnan A; Prabhakar S; Sudarsan S; Sane SP
    J Exp Biol; 2012 Sep; 215(Pt 17):3096-105. PubMed ID: 22660776
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Central projections of the maxillary and antennal nerves in the mosquito Aedes aegypti.
    Distler P; Boeckh J
    J Exp Biol; 1997; 200(Pt 13):1873-9. PubMed ID: 9319784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Serotonin-immunoreactive sensory neurons in the antenna of the cockroach Periplaneta americana.
    Watanabe H; Shimohigashi M; Yokohari F
    J Comp Neurol; 2014 Feb; 522(2):414-34. PubMed ID: 23852943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of receptor axons on the formation of olfactory glomeruli in a hemimetabolous insect, the cockroach Periplaneta americana.
    Salecker I; Boeckh J
    J Comp Neurol; 1996 Jun; 370(2):262-79. PubMed ID: 8808734
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ramification pattern and ultrastructural characteristics of the serotonin-immunoreactive neuron in the antennal lobe of the moth Manduca sexta: a laser scanning confocal and electron microscopic study.
    Sun XJ; Tolbert LP; Hildebrand JG
    J Comp Neurol; 1993 Dec; 338(1):5-16. PubMed ID: 8300899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distribution of NPY and NPY-Y1 receptor-like immunoreactivities in the central nervous system of Triatoma infestans (Insecta: Heteroptera).
    Settembrini BP; Nowicki S; Hökfelt T; Villar MJ
    J Comp Neurol; 2003 May; 460(2):141-54. PubMed ID: 12687680
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glial cells stabilize axonal protoglomeruli in the developing olfactory lobe of the moth Manduca sexta.
    Baumann PM; Oland LA; Tolbert LP
    J Comp Neurol; 1996 Sep; 373(1):118-28. PubMed ID: 8876467
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Topographic organization of sensory afferents of Johnston's organ in the honeybee brain.
    Ai H; Nishino H; Itoh T
    J Comp Neurol; 2007 Jun; 502(6):1030-46. PubMed ID: 17444491
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distribution of acetylcholinesterase activity in the deutocerebrum of the sphinx moth Manduca sexta.
    Homberg U; Hoskins SG; Hildebrand JG
    Cell Tissue Res; 1995 Feb; 279(2):249-59. PubMed ID: 7895267
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visual feedback influences antennal positioning in flying hawk moths.
    Krishnan A; Sane SP
    J Exp Biol; 2014 Mar; 217(Pt 6):908-17. PubMed ID: 24265427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antennal pathways in the central nervous system of a blood-sucking bug, Rhodnius prolixus.
    Barrozo RB; Couton L; Lazzari CR; Insausti TC; Minoli SA; Fresquet N; Rospars JP; Anton S
    Arthropod Struct Dev; 2009 Mar; 38(2):101-10. PubMed ID: 18809510
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and Functional Plasticity in the Regenerating Olfactory System of the Migratory Locust.
    Bicker G; Stern M
    Front Physiol; 2020; 11():608661. PubMed ID: 33424632
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative analysis of olfactory receptor neuron projections in the antennal lobe of the malaria mosquito, Anopheles gambiae.
    Anton S; Rospars JP
    J Comp Neurol; 2004 Jul; 475(3):315-26. PubMed ID: 15221948
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proprioceptive input to a descending pathway conveying antennal postural information: Terminal organisation of antennal hair field afferents.
    Goldammer J; Dürr V
    Arthropod Struct Dev; 2018 Sep; 47(5):465-481. PubMed ID: 30076912
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The antennal lobe of Libellula depressa (Odonata, Libellulidae).
    Rebora M; Dell'otto A; Rybak J; Piersanti S; Gaino E; Hansson BS
    Zoology (Jena); 2013 Aug; 116(4):205-14. PubMed ID: 23816255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.