These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29210122)

  • 1. Dehydrogenation of N-Heterocycles by Superoxide Ion Generated through Single-Electron Transfer.
    Huang YQ; Song HJ; Liu YX; Wang QM
    Chemistry; 2018 Feb; 24(9):2065-2069. PubMed ID: 29210122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen-Doped Carbon as a Highly Active Metal-Free Catalyst for the Selective Oxidative Dehydrogenation of N-Heterocycles.
    Li X; Yuan Z; Liu Y; Yang H; Nie J; Wang G; Liu B
    ChemSusChem; 2022 Aug; 15(15):e202200753. PubMed ID: 35504842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of N-X bonds in the synthesis of N-heterocycles.
    Minakata S
    Acc Chem Res; 2009 Aug; 42(8):1172-82. PubMed ID: 19480410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative dehydrogenation of C-C and C-N bonds: A convenient approach to access diverse (dihydro)heteroaromatic compounds.
    Hati S; Holzgrabe U; Sen S
    Beilstein J Org Chem; 2017; 13():1670-1692. PubMed ID: 28904611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in the synthesis of N-heteroarenes
    Bera A; Bera S; Banerjee D
    Chem Commun (Camb); 2021 Dec; 57(97):13042-13058. PubMed ID: 34781335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerobic Dehydrogenation of N-Heterocycles with Grubbs Catalyst: Its Application to Assisted-Tandem Catalysis to Construct N-Containing Fused Heteroarenes.
    Kawauchi D; Noda K; Komatsu Y; Yoshida K; Ueda H; Tokuyama H
    Chemistry; 2020 Dec; 26(68):15793-15798. PubMed ID: 32484596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tris(pentafluorophenyl)borane-Catalyzed Acceptorless Dehydrogenation of N-Heterocycles.
    Kojima M; Kanai M
    Angew Chem Int Ed Engl; 2016 Sep; 55(40):12224-7. PubMed ID: 27539196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-metal-mediated
    Hou H; Ma X; Ye Y; Wu M; Shi S; Zheng W; Lin M; Sun W; Ke F
    RSC Adv; 2022 Feb; 12(9):5483-5488. PubMed ID: 35425580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent- and Additive-Free Dehydrogenation of N-Heterocycles with Oxygen Catalyzed by Polyoxovanadate-Based Metal-Organic Frameworks.
    Tian H; Pan Y; Xu N; Miao J; Zheng Z
    Inorg Chem; 2023 Dec; 62(49):20228-20235. PubMed ID: 38073495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C(sp
    He Y; Wang F; Zhang X; Fan X
    Chem Commun (Camb); 2017 Apr; 53(28):4002-4005. PubMed ID: 28338142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cu(I) Complexes Catalyzed the Dehydrogenation of
    Shen Y; Chen F; Du Z; Zhang H; Liu J; Liu N
    J Org Chem; 2024 Apr; 89(7):4530-4537. PubMed ID: 38483270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable Photoelectrochemical Dehydrogenative Cross-Coupling of Heteroarenes with Aliphatic C-H Bonds.
    Xu P; Chen PY; Xu HC
    Angew Chem Int Ed Engl; 2020 Aug; 59(34):14275-14280. PubMed ID: 32489009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective catalytic transfer dehydrogenation of alkanes and heterocycles by an iridium pincer complex.
    Yao W; Zhang Y; Jia X; Huang Z
    Angew Chem Int Ed Engl; 2014 Jan; 53(5):1390-4. PubMed ID: 24382741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DMSO/
    Yang R; Yue S; Tan W; Xie Y; Cai H
    J Org Chem; 2020 Jun; 85(11):7501-7509. PubMed ID: 32368910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms for dehydrogenation and hydrogenation of N-heterocycles using PNP-pincer-supported iron catalysts: a density functional study.
    Sawatlon B; Surawatanawong P
    Dalton Trans; 2016 Oct; 45(38):14965-78. PubMed ID: 27550424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper-Catalyzed Aerobic Oxidations of Organic Molecules: Pathways for Two-Electron Oxidation with a Four-Electron Oxidant and a One-Electron Redox-Active Catalyst.
    McCann SD; Stahl SS
    Acc Chem Res; 2015 Jun; 48(6):1756-66. PubMed ID: 26020118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Syntheses of 1H-Indoles, Quinolines, and 6-Membered Aromatic N-Heterocycle-Fused Scaffolds via Palladium(II)-Catalyzed Aerobic Dehydrogenation under Alkoxide-Free Conditions.
    Yoo HS; Yang YS; Kim SL; Son SH; Jang YH; Shin JW; Kim NJ
    Chem Asian J; 2021 Nov; 16(21):3469-3475. PubMed ID: 34494376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron- and indium-catalyzed reactions toward nitrogen- and oxygen-containing saturated heterocycles.
    Cornil J; Gonnard L; Bensoussan C; Serra-Muns A; Gnamm C; Commandeur C; Commandeur M; Reymond S; Guérinot A; Cossy J
    Acc Chem Res; 2015 Mar; 48(3):761-73. PubMed ID: 25674664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and Characterization of Iron-Nitrogen-Doped Graphene/Core-Shell Catalysts: Efficient Oxidative Dehydrogenation of N-Heterocycles.
    Cui X; Li Y; Bachmann S; Scalone M; Surkus AE; Junge K; Topf C; Beller M
    J Am Chem Soc; 2015 Aug; 137(33):10652-8. PubMed ID: 26230874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Titanium-catalyzed multicomponent couplings: efficient one-pot syntheses of nitrogen heterocycles.
    Odom AL; McDaniel TJ
    Acc Chem Res; 2015 Nov; 48(11):2822-33. PubMed ID: 26295382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.