These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 29210128)
1. One-pot synthesis and characterization CdTe:Zn Yang CZ; Li LY; Wang XH; Yu SQ; Hu YJ J Mol Recognit; 2018 May; 31(5):e2691. PubMed ID: 29210128 [TBL] [Abstract][Full Text] [Related]
2. Molecular interaction investigation between three CdTe:Zn(2+) quantum dots and human serum albumin: A comparative study. Huang S; Qiu H; Liu Y; Huang C; Sheng J; Su W; Xiao Q Colloids Surf B Biointerfaces; 2015 Dec; 136():955-62. PubMed ID: 26555713 [TBL] [Abstract][Full Text] [Related]
3. A sensitive fluorescent sensor based on the photoinduced electron transfer mechanism for cefixime and ctDNA. Yang CZ; Liu YC; Xu C; Bai AM; Hu YJ J Mol Recognit; 2020 Mar; 33(3):e2816. PubMed ID: 31945234 [TBL] [Abstract][Full Text] [Related]
4. A sensitive quantum dots-based "OFF-ON" fluorescent sensor for ruthenium anticancer drugs and ctDNA. Huang S; Zhu F; Qiu H; Xiao Q; Zhou Q; Su W; Hu B Colloids Surf B Biointerfaces; 2014 May; 117():240-7. PubMed ID: 24657609 [TBL] [Abstract][Full Text] [Related]
5. Probing the interaction of a new synthesized CdTe quantum dots with human serum albumin and bovine serum albumin by spectroscopic methods. Bardajee GR; Hooshyar Z Mater Sci Eng C Mater Biol Appl; 2016 May; 62():806-15. PubMed ID: 26952487 [TBL] [Abstract][Full Text] [Related]
6. Influence of zinc doping on the molecular biocompatibility of cadmium-based quantum dots: Insights from the interaction with trypsin. Wang J; Yu X; Zheng X Chem Biol Interact; 2022 Jan; 351():109716. PubMed ID: 34688612 [TBL] [Abstract][Full Text] [Related]
7. Effect of CdTe quantum dots size on the conformational changes of human serum albumin: results of spectroscopy and isothermal titration calorimetry. Yang B; Liu R; Hao X; Wu Y; Du J Biol Trace Elem Res; 2013 Oct; 155(1):150-8. PubMed ID: 23904329 [TBL] [Abstract][Full Text] [Related]
9. The interactions of glutathione-capped CdTe quantum dots with trypsin. Yang B; Liu R; Hao X; Wu Y; Du J Biol Trace Elem Res; 2012 Jun; 146(3):396-401. PubMed ID: 22083424 [TBL] [Abstract][Full Text] [Related]
10. New strategy for the evaluation of CdTe quantum dot toxicity targeted to bovine serum albumin. Zhao L; Liu R; Zhao X; Yang B; Gao C; Hao X; Wu Y Sci Total Environ; 2009 Sep; 407(18):5019-23. PubMed ID: 19540569 [TBL] [Abstract][Full Text] [Related]
11. Exploring the conformational changes in fibrinogen by forming protein corona with CdTe quantum dots and the related cytotoxicity. Wang J; Zheng X; Zhang H Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117143. PubMed ID: 31136867 [TBL] [Abstract][Full Text] [Related]
12. A fluorescence nanoprobe of N-Acetyl-L-Cysteine capped CdTe QDs for sensitive detection of nitrofurazone. Wang Y; Zhang F; Liu J; Yang B; Yuan Y; Zhou Y; Bi S Spectrochim Acta A Mol Biomol Spectrosc; 2023 Sep; 297():122709. PubMed ID: 37058841 [TBL] [Abstract][Full Text] [Related]
13. Comparison of molecular interactions of Ag Xiao Q; Liang Y; Liu Y; Lu S; Huang S Luminescence; 2018 Feb; 33(1):181-189. PubMed ID: 28905512 [TBL] [Abstract][Full Text] [Related]
14. Epirubicin-calf thymus DNA interaction: a comprehensive investigation using molecular docking, spectroscopy and fluorescent quantum dots. Hemati Azandaryani A; Barati A; Shahlaei M; Shamsipur M; Moradi S; Arkan E Cell Mol Biol (Noisy-le-grand); 2018 May; 64(7):1-7. PubMed ID: 29974838 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the interaction of FTO protein with thioglycolic acid capped CdTe quantum dots and its analytical application. Ge B; Li Z; Yang L; Wang R; Chang J Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():667-73. PubMed ID: 25985132 [TBL] [Abstract][Full Text] [Related]
16. One-pot synthesized aptamer-functionalized CdTe:Zn2+ quantum dots for tumor-targeted fluorescence imaging in vitro and in vivo. Zhang C; Ji X; Zhang Y; Zhou G; Ke X; Wang H; Tinnefeld P; He Z Anal Chem; 2013 Jun; 85(12):5843-9. PubMed ID: 23682757 [TBL] [Abstract][Full Text] [Related]
17. Spectroscopic studies on the interactions between CdTe quantum dots coated with different ligands and human serum albumin. Lai L; Lin C; Xu ZQ; Han XL; Tian FF; Mei P; Li DW; Ge YS; Jiang FL; Zhang YZ; Liu Y Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():366-76. PubMed ID: 22797377 [TBL] [Abstract][Full Text] [Related]
18. Studying the interaction between CdTe quantum dots and Nile blue by absorption, fluorescence and resonance Rayleigh scattering spectra. Peng JJ; Liu SP; Wang L; He YQ Spectrochim Acta A Mol Biomol Spectrosc; 2010 May; 75(5):1571-6. PubMed ID: 20227334 [TBL] [Abstract][Full Text] [Related]
19. Interactions between CdTe quantum dots and DNA revealed by capillary electrophoresis with laser-induced fluorescence detection. Stanisavljevic M; Chomoucka J; Dostalova S; Krizkova S; Vaculovicova M; Adam V; Kizek R Electrophoresis; 2014 Sep; 35(18):2587-92. PubMed ID: 24981309 [TBL] [Abstract][Full Text] [Related]
20. A Comparative Study of Nanobio Interaction of Zn-Doped CdTe Quantum Dots with Lactoferrin Using Different Spectroscopic Methods. Ji M; Ren L; Tian C; Zhuang X; Luan F Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]