These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29210238)

  • 1. Beyond seasonal climate: statistical estimation of phenological responses to weather.
    Diez JM; Ibáñez I; Silander JA; Primack R; Higuchi H; Kobori H; Sen A; James TY
    Ecol Appl; 2014; 24(7):1793-802. PubMed ID: 29210238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate drives phenological reassembly of a mountain wildflower meadow community.
    Theobald EJ; Breckheimer I; HilleRisLambers J
    Ecology; 2017 Nov; 98(11):2799-2812. PubMed ID: 29023677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grasshopper species' seasonal timing underlies shifts in phenological overlap in response to climate gradients, variability and change.
    Buckley LB; Graham SI; Nufio CR
    J Anim Ecol; 2021 May; 90(5):1252-1263. PubMed ID: 33630307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenological mismatch with abiotic conditions implications for flowering in Arctic plants.
    Wheeler HC; Høye TT; Schmidt NM; Svenning JC; Forchhammer MC
    Ecology; 2015 Mar; 96(3):775-87. PubMed ID: 26236873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenological sequences: how early-season events define those that follow.
    Ettinger AK; Gee S; Wolkovich EM
    Am J Bot; 2018 Oct; 105(10):1771-1780. PubMed ID: 30324664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States.
    Melaas EK; Friedl MA; Richardson AD
    Glob Chang Biol; 2016 Feb; 22(2):792-805. PubMed ID: 26456080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental controls on the phenology of moths: predicting plasticity and constraint under climate change.
    Valtonen A; Ayres MP; Roininen H; Pöyry J; Leinonen R
    Oecologia; 2011 Jan; 165(1):237-48. PubMed ID: 20882390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weather anomalies more important than climate means in driving insect phenology.
    Guralnick RP; Campbell LP; Belitz MW
    Commun Biol; 2023 May; 6(1):490. PubMed ID: 37147472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate.
    Iler AM; Inouye DW; Høye TT; Miller-Rushing AJ; Burkle LA; Johnston EB
    Glob Chang Biol; 2013 Aug; 19(8):2348-59. PubMed ID: 23640772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overlooked climate parameters best predict flowering onset: Assessing phenological models using the elastic net.
    Park IW; Mazer SJ
    Glob Chang Biol; 2018 Dec; 24(12):5972-5984. PubMed ID: 30218548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contrasting wheat phenological responses to climate change in global scale.
    Ren S; Qin Q; Ren H
    Sci Total Environ; 2019 May; 665():620-631. PubMed ID: 30776634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species' phenological cueing mechanisms.
    Davis CC; Willis CG; Connolly B; Kelly C; Ellison AM
    Am J Bot; 2015 Oct; 102(10):1599-609. PubMed ID: 26451038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A decade of flowering phenology of the keystone saguaro cactus (Carnegiea gigantea).
    Renzi JJ; Peachey WD; Gerst KL
    Am J Bot; 2019 Feb; 106(2):199-210. PubMed ID: 30791093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resource specialists lead local insect community turnover associated with temperature - analysis of an 18-year full-seasonal record of moths and beetles.
    Thomsen PF; Jørgensen PS; Bruun HH; Pedersen J; Riis-Nielsen T; Jonko K; Słowińska I; Rahbek C; Karsholt O
    J Anim Ecol; 2016 Jan; 85(1):251-61. PubMed ID: 26521706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of the Morus bombycis growing season to temperature and its latitudinal pattern in Japan.
    Doi H
    Int J Biometeorol; 2012 Sep; 56(5):895-902. PubMed ID: 21947335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple temperature effects on phenology and body size in wild butterflies predict a complex response to climate change.
    Davies WJ
    Ecology; 2019 Apr; 100(4):e02612. PubMed ID: 30636278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate Change and Crop Exposure to Adverse Weather: Changes to Frost Risk and Grapevine Flowering Conditions.
    Mosedale JR; Wilson RJ; Maclean IM
    PLoS One; 2015; 10(10):e0141218. PubMed ID: 26496127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenological responses in a sycamore-aphid-parasitoid system and consequences for aphid population dynamics: A 20 year case study.
    Senior VL; Evans LC; Leather SR; Oliver TH; Evans KL
    Glob Chang Biol; 2020 May; 26(5):2814-2828. PubMed ID: 31985111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.
    Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH
    Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of experimental warming on the timing of a plant-insect herbivore interaction.
    Kharouba HM; Vellend M; Sarfraz RM; Myers JH
    J Anim Ecol; 2015 May; 84(3):785-796. PubMed ID: 25535854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.