BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 29210356)

  • 1. Single-molecule studies contrast ordered DNA replication with stochastic translesion synthesis.
    Zhao G; Gleave ES; Lamers MH
    Elife; 2017 Dec; 6():. PubMed ID: 29210356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translesion synthesis in Escherichia coli: lessons from the NarI mutation hot spot.
    Fuchs RP; Fujii S
    DNA Repair (Amst); 2007 Jul; 6(7):1032-41. PubMed ID: 17403618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comprehensive View of Translesion Synthesis in Escherichia coli.
    Fujii S; Fuchs RP
    Microbiol Mol Biol Rev; 2020 Aug; 84(3):. PubMed ID: 32554755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The processivity factor beta controls DNA polymerase IV traffic during spontaneous mutagenesis and translesion synthesis in vivo.
    Lenne-Samuel N; Wagner J; Etienne H; Fuchs RP
    EMBO Rep; 2002 Jan; 3(1):45-9. PubMed ID: 11751576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exchange between Escherichia coli polymerases II and III on a processivity clamp.
    Kath JE; Chang S; Scotland MK; Wilbertz JH; Jergic S; Dixon NE; Sutton MD; Loparo JJ
    Nucleic Acids Res; 2016 Feb; 44(4):1681-90. PubMed ID: 26657641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymerase exchange on single DNA molecules reveals processivity clamp control of translesion synthesis.
    Kath JE; Jergic S; Heltzel JM; Jacob DT; Dixon NE; Sutton MD; Walker GC; Loparo JJ
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7647-52. PubMed ID: 24825884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sliding-clamp toolbelt binds high- and low-fidelity DNA polymerases simultaneously.
    Indiani C; McInerney P; Georgescu R; Goodman MF; O'Donnell M
    Mol Cell; 2005 Sep; 19(6):805-15. PubMed ID: 16168375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of specialized DNA polymerases Pol II, Pol IV and DnaE2 in DNA replication in the absence of Pol I in Pseudomonas putida.
    Sidorenko J; Jatsenko T; Saumaa S; Teras R; Tark-Dame M; Hõrak R; Kivisaar M
    Mutat Res; 2011 Sep; 714(1-2):63-77. PubMed ID: 21763330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis.
    Napolitano R; Janel-Bintz R; Wagner J; Fuchs RP
    EMBO J; 2000 Nov; 19(22):6259-65. PubMed ID: 11080171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase.
    Indiani C; Langston LD; Yurieva O; Goodman MF; O'Donnell M
    Proc Natl Acad Sci U S A; 2009 Apr; 106(15):6031-8. PubMed ID: 19279203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competition of Escherichia coli DNA polymerases I, II and III with DNA Pol IV in stressed cells.
    Hastings PJ; Hersh MN; Thornton PC; Fonville NC; Slack A; Frisch RL; Ray MP; Harris RS; Leal SM; Rosenberg SM
    PLoS One; 2010 May; 5(5):e10862. PubMed ID: 20523737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetics of mutagenesis in E. coli: various combinations of translesion polymerases (Pol II, IV and V) deal with lesion/sequence context diversity.
    Wagner J; Etienne H; Janel-Bintz R; Fuchs RP
    DNA Repair (Amst); 2002 Feb; 1(2):159-67. PubMed ID: 12509262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA polymerases II and V mediate respectively mutagenic (-2 frameshift) and error-free bypass of a single N-2-acetylaminofluorene adduct.
    Fuchs RP; Koffel-Schwartz N; Pelet S; Janel-Bintz R; Napolitano R; Becherel OJ; Broschard TH; Burnouf DY; Wagner J
    Biochem Soc Trans; 2001 May; 29(Pt 2):191-5. PubMed ID: 11356152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. During Translesion Synthesis, Escherichia coli DinB89 (T120P) Alters Interactions of DinB (Pol IV) with Pol III Subunit Assemblies and SSB, but Not with the β Clamp.
    Scotland MK; Homiski C; Sutton MD
    J Bacteriol; 2022 Apr; 204(4):e0061121. PubMed ID: 35285726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of translesion replication across an abasic site by DNA polymerase IV of Escherichia coli.
    Maor-Shoshani A; Hayashi K; Ohmori H; Livneh Z
    DNA Repair (Amst); 2003 Nov; 2(11):1227-38. PubMed ID: 14599744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for recruitment of translesion DNA polymerase Pol IV/DinB to the beta-clamp.
    Bunting KA; Roe SM; Pearl LH
    EMBO J; 2003 Nov; 22(21):5883-92. PubMed ID: 14592985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replication bypass of interstrand cross-link intermediates by Escherichia coli DNA polymerase IV.
    Kumari A; Minko IG; Harbut MB; Finkel SE; Goodman MF; Lloyd RS
    J Biol Chem; 2008 Oct; 283(41):27433-27437. PubMed ID: 18697749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining the position of the switches between replicative and bypass DNA polymerases.
    Fujii S; Fuchs RP
    EMBO J; 2004 Oct; 23(21):4342-52. PubMed ID: 15470496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and biochemical analysis of sliding clamp/ligand interactions suggest a competition between replicative and translesion DNA polymerases.
    Burnouf DY; Olieric V; Wagner J; Fujii S; Reinbolt J; Fuchs RP; Dumas P
    J Mol Biol; 2004 Jan; 335(5):1187-97. PubMed ID: 14729336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-molecule visualization of fast polymerase turnover in the bacterial replisome.
    Lewis JS; Spenkelink LM; Jergic S; Wood EA; Monachino E; Horan NP; Duderstadt KE; Cox MM; Robinson A; Dixon NE; van Oijen AM
    Elife; 2017 Apr; 6():. PubMed ID: 28432790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.