These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 29210378)
41. Application of Ion Mobility Spectrometry for Permeability Studies of Organic Substances through Polymeric Materials. Wiśnik-Sawka M; Budzyńska E; Puton J Molecules; 2020 Jun; 25(13):. PubMed ID: 32610631 [TBL] [Abstract][Full Text] [Related]
42. Selective trace enrichment of acidic pharmaceuticals in real water and sediment samples based on solid-phase extraction using multi-templates molecularly imprinted polymers. Duan YP; Dai CM; Zhang YL; Ling-Chen Anal Chim Acta; 2013 Jan; 758():93-100. PubMed ID: 23245900 [TBL] [Abstract][Full Text] [Related]
43. Nano- and micro-particulate formulations of poorly water-soluble drugs by using a novel optimized technique. Douroumis D; Fahr A Eur J Pharm Biopharm; 2006 Jun; 63(2):173-5. PubMed ID: 16621482 [TBL] [Abstract][Full Text] [Related]
44. Transfer kinetics of polar organic compounds over polyethersulfone membranes in the passive samplers POCIS and Chemcatcher. Vermeirssen EL; Dietschweiler C; Escher BI; van der Voet J; Hollender J Environ Sci Technol; 2012 Jun; 46(12):6759-66. PubMed ID: 22594693 [TBL] [Abstract][Full Text] [Related]
45. Porous Membranes Built Up from Hydrophilic Poly(ionic liquid)s. Täuber K; Zimathies A; Yuan J Macromol Rapid Commun; 2015 Dec; 36(24):2176-80. PubMed ID: 26469279 [TBL] [Abstract][Full Text] [Related]
46. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: selection of polymer-surfactant combinations using solubility parameters and testing the processability. Ghebremeskel AN; Vemavarapu C; Lodaya M Int J Pharm; 2007 Jan; 328(2):119-29. PubMed ID: 16968659 [TBL] [Abstract][Full Text] [Related]
48. Coupling of solid-phase microextraction with micellar desorption and high performance liquid chromatography for the determination of pharmaceutical residues in environmental liquid samples. Padrón ME; Ferrera ZS; Rodríguez JJ Biomed Chromatogr; 2009 Nov; 23(11):1175-85. PubMed ID: 19444801 [TBL] [Abstract][Full Text] [Related]
49. The influence of natural organic matter and cations on the rejection of endocrine disrupting and pharmaceutically active compounds by nanofiltration. Comerton AM; Andrews RC; Bagley DM Water Res; 2009 Feb; 43(3):613-22. PubMed ID: 19046596 [TBL] [Abstract][Full Text] [Related]
50. Single column comprehensive analysis of pharmaceutical preparations using dual-injection mixed-mode (ion-exchange and reversed-phase) and hydrophilic interaction liquid chromatography. Kazarian AA; Taylor MR; Haddad PR; Nesterenko PN; Paull B J Pharm Biomed Anal; 2013 Dec; 86():174-81. PubMed ID: 24001905 [TBL] [Abstract][Full Text] [Related]
51. Selective extraction of triazine herbicides from food samples based on a combination of a liquid membrane and molecularly imprinted polymers. Mhaka B; Cukrowska E; Bui BT; Ramström O; Haupt K; Tutu H; Chimuka L J Chromatogr A; 2009 Oct; 1216(40):6796-801. PubMed ID: 19720380 [TBL] [Abstract][Full Text] [Related]
52. Using the polymer partitioning method to probe the thermodynamic activity of poorly water-soluble drugs solubilized in model lipid digestion products. Boyd BJ; Porter CJ; Charman WN J Pharm Sci; 2003 Jun; 92(6):1262-71. PubMed ID: 12761815 [TBL] [Abstract][Full Text] [Related]
53. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Wang B; Liang W; Guo Z; Liu W Chem Soc Rev; 2015 Jan; 44(1):336-61. PubMed ID: 25311259 [TBL] [Abstract][Full Text] [Related]
54. Use of molecularly imprinted polymers from a mixture of tetracycline and its degradation products to produce affinity membranes for the removal of tetracycline from water. Suedee R; Srichana T; Chuchome T; Kongmark U J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Nov; 811(2):191-200. PubMed ID: 15522720 [TBL] [Abstract][Full Text] [Related]
55. A novel polymer inclusion membranes based optode for sensitive determination of Al³⁺ ions. Suah FB; Ahmad M; Heng LY Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 144():81-7. PubMed ID: 25748985 [TBL] [Abstract][Full Text] [Related]
56. Synthesis and application of hypercrosslinked polymers with weak cation-exchange character for the selective extraction of basic pharmaceuticals from complex environmental water samples. Bratkowska D; Marcé RM; Cormack PA; Sherrington DC; Borrull F; Fontanals N J Chromatogr A; 2010 Mar; 1217(10):1575-82. PubMed ID: 20132936 [TBL] [Abstract][Full Text] [Related]
57. Enhancement of the capabilities of liquid chromatography-mass spectrometry with derivatization: general principles and applications. Xu F; Zou L; Liu Y; Zhang Z; Ong CN Mass Spectrom Rev; 2011; 30(6):1143-72. PubMed ID: 21557289 [TBL] [Abstract][Full Text] [Related]
58. Simple surface treatment using amphiphilic phospholipid polymers to obtain wetting and lubricity on polydimethylsiloxane-based substrates. Fukazawa K; Ishihara K Colloids Surf B Biointerfaces; 2012 Sep; 97():70-6. PubMed ID: 22609584 [TBL] [Abstract][Full Text] [Related]
59. [Effect of different organic fraction on membrane flux declines]. Zhou XJ; Dong BZ Huan Jing Ke Xue; 2009 Feb; 30(2):432-8. PubMed ID: 19402494 [TBL] [Abstract][Full Text] [Related]
60. Lean Raman imaging for rapid assessment of homogeneity in pharmaceutical formulations. Brown SC; Claybourn M; Sievwright D; Fearnside V; Ashman C Appl Spectrosc; 2010 Apr; 64(4):442-7. PubMed ID: 20412630 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]