These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 29210426)

  • 1. Probing nano-patterned peptide self-organisation at the aqueous graphene interface.
    Hughes ZE; Walsh TR
    Nanoscale; 2017 Dec; 10(1):302-311. PubMed ID: 29210426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic-level study of adsorption, conformational change, and dimerization of an α-helical peptide at graphene surface.
    Ou L; Luo Y; Wei G
    J Phys Chem B; 2011 Aug; 115(32):9813-22. PubMed ID: 21692466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What makes a good graphene-binding peptide? Adsorption of amino acids and peptides at aqueous graphene interfaces.
    Hughes ZE; Walsh TR
    J Mater Chem B; 2015 Apr; 3(16):3211-3221. PubMed ID: 32262315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictions of Pattern Formation in Amino Acid Adlayers at the In Vacuo Graphene Interface: Influence of Termination State.
    Awuah JB; Walsh TR
    Small; 2020 Mar; 16(12):e1903403. PubMed ID: 31663292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Dynamics of Cellulose Amphiphilicity at the Graphene-Water Interface.
    Alqus R; Eichhorn SJ; Bryce RA
    Biomacromolecules; 2015 Jun; 16(6):1771-83. PubMed ID: 26015270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular-level understanding of the adsorption mechanism of a graphite-binding peptide at the water/graphite interface.
    Penna MJ; Mijajlovic M; Tamerler C; Biggs MJ
    Soft Matter; 2015 Jul; 11(26):5192-203. PubMed ID: 25920450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling the Polymer Chain-Adsorbed Constrained Interfacial Region on an Atomistically Thin Carbon Sheet.
    Kumar S; Sriramoju KK; Aswal VK; Padmanabhan V; Harikrishnan G
    J Phys Chem B; 2019 Apr; 123(13):2994-3001. PubMed ID: 30864808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between hydrogen flux and carbon monolayer on SiC(0001): graphene formation kinetics.
    Deretzis I; La Magna A
    Nanoscale; 2013 Jan; 5(2):671-80. PubMed ID: 23223677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled air-stable supramolecular porous networks on graphene.
    Li B; Tahara K; Adisoejoso J; Vanderlinden W; Mali KS; De Gendt S; Tobe Y; De Feyter S
    ACS Nano; 2013 Dec; 7(12):10764-72. PubMed ID: 24206021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Side-chain effects on the co-existence of emergent nanopatterns in amino acid adlayers on graphene.
    Awuah JB; Walsh TR
    Nanoscale; 2020 Jul; 12(25):13662-13673. PubMed ID: 32568329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Scale Structure and Kinetics of Layer-by-Layer Peptide Self-Organization at Atomically Flat Solid Surfaces.
    Yurtsever A; Sun L; Hirata K; Fukuma T; Rath S; Zareie H; Watanabe S; Sarikaya M
    ACS Nano; 2023 Apr; 17(8):7311-7325. PubMed ID: 36857412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide-Graphene Interactions Enhance the Mechanical Properties of Silk Fibroin.
    Cheng Y; Koh LD; Li D; Ji B; Zhang Y; Yeo J; Guan G; Han MY; Zhang YW
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21787-96. PubMed ID: 26364925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of various polymer-graphene interfacial systems through atomistic molecular dynamics simulations.
    Rissanou AN; Harmandaris V
    Soft Matter; 2014 Apr; 10(16):2876-88. PubMed ID: 24667937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene-polyelectrolyte multilayer film formation driven by hydrogen bonding.
    Sham AY; Notley SM
    J Colloid Interface Sci; 2015 Oct; 456():32-41. PubMed ID: 26092114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic contaminants and atmospheric nitrogen at the graphene-water interface: a simulation study.
    Thakkar R; Gajaweera S; Comer J
    Nanoscale Adv; 2022 Mar; 4(7):1741-1757. PubMed ID: 36132158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aqueous Peptide-TiO2 Interfaces: Isoenergetic Binding via Either Entropically or Enthalpically Driven Mechanisms.
    Sultan AM; Westcott ZC; Hughes ZE; Palafox-Hernandez JP; Giesa T; Puddu V; Buehler MJ; Perry CC; Walsh TR
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18620-30. PubMed ID: 27355097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulation of peptide-fatty acid bioconjugates on graphene: effects of fatty acid chain length and attachment point.
    Perdomo Y; Jin R; Parab AD; Knecht MR; Walsh TR
    J Mater Chem B; 2022 Aug; 10(31):6018-6025. PubMed ID: 35894139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites.
    Kim Y; Lee J; Yeom MS; Shin JW; Kim H; Cui Y; Kysar JW; Hone J; Jung Y; Jeon S; Han SM
    Nat Commun; 2013; 4():2114. PubMed ID: 23820590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural properties of hydration shell around various conformations of simple polypeptides.
    Czapiewski D; Zielkiewicz J
    J Phys Chem B; 2010 Apr; 114(13):4536-50. PubMed ID: 20232827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shifting atomic patterns: on the origin of the different atomic-scale patterns of graphite as observed using scanning tunnelling microscopy.
    Wong HS; Durkan C
    Nanotechnology; 2012 May; 23(18):185703. PubMed ID: 22499165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.