These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 29210427)
1. Controllable manipulation of bubbles in water by using underwater superaerophobic graphene-oxide/gold-nanoparticle composite surfaces. Xu R; Xu X; He M; Su B Nanoscale; 2017 Dec; 10(1):231-238. PubMed ID: 29210427 [TBL] [Abstract][Full Text] [Related]
2. Femtosecond laser induced underwater superaerophilic and superaerophobic PDMS sheets with through microholes for selective passage of air bubbles and further collection of underwater gas. Yong J; Chen F; Huo J; Fang Y; Yang Q; Zhang J; Hou X Nanoscale; 2018 Feb; 10(8):3688-3696. PubMed ID: 29340400 [TBL] [Abstract][Full Text] [Related]
3. Bioinspired Design of Underwater Superaerophobic and Superaerophilic Surfaces by Femtosecond Laser Ablation for Anti- or Capturing Bubbles. Yong J; Chen F; Fang Y; Huo J; Yang Q; Zhang J; Bian H; Hou X ACS Appl Mater Interfaces; 2017 Nov; 9(45):39863-39871. PubMed ID: 29067804 [TBL] [Abstract][Full Text] [Related]
4. Water/gas separation based on the selective bubble-passage effect of underwater superaerophobic and superaerophilic meshes processed by a femtosecond laser. Yong J; Zhuang J; Bai X; Huo J; Yang Q; Hou X; Chen F Nanoscale; 2021 Jun; 13(23):10414-10424. PubMed ID: 34018504 [TBL] [Abstract][Full Text] [Related]
5. Underwater Superaerophobic and Superaerophilic Nanoneedles-Structured Meshes for Water/Bubbles Separation: Removing or Collecting Gas Bubbles in Water. Yong J; Chen F; Li W; Huo J; Fang Y; Yang Q; Bian H; Hou X Glob Chall; 2018 Apr; 2(4):1700133. PubMed ID: 31565330 [TBL] [Abstract][Full Text] [Related]
6. Laser Structuring of Underwater Bubble-Repellent Surface. Yang S; Yin K; Dong X; He J; Duan JA J Nanosci Nanotechnol; 2018 Dec; 18(12):8381-8385. PubMed ID: 30189963 [TBL] [Abstract][Full Text] [Related]
7. Substrate-Independent, Fast, and Reversible Switching between Underwater Superaerophobicity and Aerophilicity on the Femtosecond Laser-Induced Superhydrophobic Surfaces for Selectively Repelling or Capturing Bubbles in Water. Yong J; Singh SC; Zhan Z; Chen F; Guo C ACS Appl Mater Interfaces; 2019 Feb; 11(8):8667-8675. PubMed ID: 30698002 [TBL] [Abstract][Full Text] [Related]
8. Substrate-independent, switchable bubble wettability surfaces induced by ultrasonic treatment. Chu D; Sun X; Hu Y; Duan JA Soft Matter; 2019 Sep; 15(37):7398-7403. PubMed ID: 31464333 [TBL] [Abstract][Full Text] [Related]
9. Underwater manipulation of oil droplets and bubbles on superhydrophobic surfaces via switchable adhesion. Gao D; Cao J; Guo Z Chem Commun (Camb); 2019 Mar; 55(23):3394-3397. PubMed ID: 30821793 [TBL] [Abstract][Full Text] [Related]
10. Induced Superaerophobicity onto a Non-superaerophobic Catalytic Surface for Enhanced Hydrogen Evolution Reaction. Akbar K; Hussain S; Truong L; Roy SB; Jeon JH; Jerng SK; Kim M; Yi Y; Jung J; Chun SH ACS Appl Mater Interfaces; 2017 Dec; 9(50):43674-43680. PubMed ID: 29179532 [TBL] [Abstract][Full Text] [Related]
11. Electrically Induced Underwater Superaerophilicity/Superaerophobicity Switching on Polypyrrole-Coated Mesh Films for Selective Bubble Permeation. Wang R; Liu P; Yu X; Sun X; Lai H; Cheng Z Chempluschem; 2022 Jan; 87(1):e202100491. PubMed ID: 35023641 [TBL] [Abstract][Full Text] [Related]
13. Underwater Bubble Manipulation on Surfaces with Patterned Regions with Infused Lubricants. He S; Li Z; Yu A; Guo Z ACS Appl Mater Interfaces; 2024 Mar; 16(11):14275-14287. PubMed ID: 38447139 [TBL] [Abstract][Full Text] [Related]
14. Ladderlike Conical Micropillars Facilitating Underwater Gas-Bubble Manipulation in an Aqueous Environment. Shi D; Chen Y; Yao Y; Hou M; Chen X; Gao J; He Y; Zhang G; Wong CP ACS Appl Mater Interfaces; 2020 Sep; 12(37):42437-42445. PubMed ID: 32840997 [TBL] [Abstract][Full Text] [Related]
15. The wettability of gas bubbles: from macro behavior to nano structures to applications. Huang C; Guo Z Nanoscale; 2018 Nov; 10(42):19659-19672. PubMed ID: 30335112 [TBL] [Abstract][Full Text] [Related]
16. Overcoming Long-Range Unidirectional Transport of Underwater Bubbles on Laser-Textured Single-Layer Superaerophobic Dual-Rail Arrays. Wu S; Lu J; Li D; Huang J; Li C; Lao Z; Chen C ACS Appl Bio Mater; 2023 Jun; 6(6):2277-2283. PubMed ID: 37171103 [TBL] [Abstract][Full Text] [Related]
17. Superaerophobicity: repellence of air bubbles from submerged, surface-engineered silicon substrates. Dorrer C; Rühe J Langmuir; 2012 Oct; 28(42):14968-73. PubMed ID: 23030248 [TBL] [Abstract][Full Text] [Related]
18. Free-Standing Graphene Oxide-Palygorskite Nanohybrid Membrane for Oil/Water Separation. Zhao X; Su Y; Liu Y; Li Y; Jiang Z ACS Appl Mater Interfaces; 2016 Mar; 8(12):8247-56. PubMed ID: 26978041 [TBL] [Abstract][Full Text] [Related]
19. From Beetles in Nature to the Laboratory: Actuating Underwater Locomotion on Hydrophobic Surfaces. Pinchasik BE; Steinkühler J; Wuytens P; Skirtach AG; Fratzl P; Möhwald H Langmuir; 2015 Dec; 31(51):13734-42. PubMed ID: 26633751 [TBL] [Abstract][Full Text] [Related]
20. Automated Manipulation of Miniature Objects Underwater Using Air Capillary Bridges: Pick-and-Place, Surface Cleaning, and Underwater Origami. Weinstein T; Gilon H; Filc O; Sammartino C; Pinchasik BE ACS Appl Mater Interfaces; 2022 Feb; 14(7):9855-9863. PubMed ID: 35080367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]