These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. 3D printing of photocurable poly(glycerol sebacate) elastomers. Yeh YC; Highley CB; Ouyang L; Burdick JA Biofabrication; 2016 Oct; 8(4):045004. PubMed ID: 27716633 [TBL] [Abstract][Full Text] [Related]
3. 3D Printing of Photocuring Elastomers with Excellent Mechanical Strength and Resilience. Ji Z; Zhang X; Yan C; Jia X; Xia Y; Wang X; Zhou F Macromol Rapid Commun; 2019 Apr; 40(8):e1800873. PubMed ID: 30779410 [TBL] [Abstract][Full Text] [Related]
4. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091 [TBL] [Abstract][Full Text] [Related]
5. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs. Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905 [TBL] [Abstract][Full Text] [Related]
7. 3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels. Zhao D; Liu Y; Liu B; Chen Z; Nian G; Qu S; Yang W ACS Appl Mater Interfaces; 2021 Mar; 13(11):13714-13723. PubMed ID: 33720679 [TBL] [Abstract][Full Text] [Related]
8. Multimaterial 3D Printing of Highly Stretchable Silicone Elastomers. Zhou LY; Gao Q; Fu JZ; Chen QY; Zhu JP; Sun Y; He Y ACS Appl Mater Interfaces; 2019 Jul; 11(26):23573-23583. PubMed ID: 31184459 [TBL] [Abstract][Full Text] [Related]
9. Identification of Novel "Inks" for 3D Printing Using High-Throughput Screening: Bioresorbable Photocurable Polymers for Controlled Drug Delivery. Louzao I; Koch B; Taresco V; Ruiz-Cantu L; Irvine DJ; Roberts CJ; Tuck C; Alexander C; Hague R; Wildman R; Alexander MR ACS Appl Mater Interfaces; 2018 Feb; 10(8):6841-6848. PubMed ID: 29322768 [TBL] [Abstract][Full Text] [Related]
10. Direct ink writing of porous titanium (Ti6Al4V) lattice structures. Elsayed H; Rebesan P; Giacomello G; Pasetto M; Gardin C; Ferroni L; Zavan B; Biasetto L Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109794. PubMed ID: 31349412 [TBL] [Abstract][Full Text] [Related]
11. 3D printing and characterization of a soft and biostable elastomer with high flexibility and strength for biomedical applications. Bachtiar EO; Erol O; Millrod M; Tao R; Gracias DH; Romer LH; Kang SH J Mech Behav Biomed Mater; 2020 Apr; 104():103649. PubMed ID: 32174407 [TBL] [Abstract][Full Text] [Related]
12. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering. Kumar A; I Matari IA; Han SS Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691 [TBL] [Abstract][Full Text] [Related]
13. Current Status in the Utilization of Biobased Polymers for 3D Printing Process: A Systematic Review of the Materials, Processes, and Challenges. Shahbazi M; Jäger H ACS Appl Bio Mater; 2021 Jan; 4(1):325-369. PubMed ID: 35014287 [TBL] [Abstract][Full Text] [Related]
14. 3D printable tough silicone double networks. Wallin TJ; Simonsen LE; Pan W; Wang K; Giannelis E; Shepherd RF; Mengüç Y Nat Commun; 2020 Aug; 11(1):4000. PubMed ID: 32778657 [TBL] [Abstract][Full Text] [Related]
15. A Molecular Rheology Dynamics Study on 3D Printing of Liquid Crystal Elastomers. Ustunel S; Pandya H; Prévôt ME; Pegorin G; Shiralipour F; Paul R; Clements RJ; Khabaz F; Hegmann E Macromol Rapid Commun; 2024 Jun; 45(11):e2300717. PubMed ID: 38445752 [TBL] [Abstract][Full Text] [Related]