BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

760 related articles for article (PubMed ID: 29210630)

  • 1. Use of a Phage-Display Method to Identify Peptides that Bind to a Tin Oxide Nanosheets.
    Nakazawa H; Seta Y; Hirose T; Masuda Y; Umetsu M
    Protein Pept Lett; 2018; 25(1):68-75. PubMed ID: 29210630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Indium Tin Oxide Nanoparticle-Binding Peptides via Phage Display and Biopanning Under Various Buffer Conditions.
    Nakazawa H; Umetsu M; Hirose T; Hattori T; Kumagai I
    Protein Pept Lett; 2020; 27(6):557-566. PubMed ID: 31729292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Substrate Identification Method for Human Scp1 Phosphatase Using Phosphorylation Mimic Phage Display.
    Otsubo K; Yoneda T; Kaneko A; Yagi S; Furukawa K; Chuman Y
    Protein Pept Lett; 2018; 25(1):76-83. PubMed ID: 29210629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide interactions with metal and oxide surfaces.
    Vallee A; Humblot V; Pradier CM
    Acc Chem Res; 2010 Oct; 43(10):1297-306. PubMed ID: 20672797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facet controlled growth mechanism of SnO
    Masuda Y
    Sci Rep; 2021 May; 11(1):11304. PubMed ID: 34050258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA adsorption by indium tin oxide nanoparticles.
    Liu B; Liu J
    Langmuir; 2015; 31(1):371-7. PubMed ID: 25521602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption.
    Patwardhan SV; Emami FS; Berry RJ; Jones SE; Naik RR; Deschaume O; Heinz H; Perry CC
    J Am Chem Soc; 2012 Apr; 134(14):6244-56. PubMed ID: 22435500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening of Oligopeptides that Recognize Inorganic Crystalline Facets of Metal Nanoparticles.
    Wei Z; Maeda Y; Kanetsuki Y; Shi M; Matsui H
    Isr J Chem; 2015 Jun; 55(6-7):749-755. PubMed ID: 31666749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalyst-free Highly Sensitive SnO
    Kim K; Choi PG; Itoh T; Masuda Y
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51637-51644. PubMed ID: 33146998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved selection procedure for the screening of phage display peptide libraries.
    D'Mello F; Howard CR
    J Immunol Methods; 2001 Jan; 247(1-2):191-203. PubMed ID: 11150550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Well-crystalline porous ZnO-SnO2 nanosheets: an effective visible-light driven photocatalyst and highly sensitive smart sensor material.
    Lamba R; Umar A; Mehta SK; Kansal SK
    Talanta; 2015 Jan; 131():490-8. PubMed ID: 25281131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection of ceramic fluorapatite-binding peptides from a phage display combinatorial peptide library: optimum affinity tags for fluorapatite chromatography.
    Islam T; Bibi NS; Vennapusa RR; Fernandez-Lahore M
    J Mol Recognit; 2013 Aug; 26(8):341-50. PubMed ID: 23784990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free energy and electronic properties of water adsorption on the SnO2(110) surface.
    Santarossa G; Hahn K; Baiker A
    Langmuir; 2013 May; 29(18):5487-99. PubMed ID: 23565745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facet-Controlled Synthesis of CeO
    Ema T; Choi PG; Takami S; Masuda Y
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):56998-57007. PubMed ID: 36521877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection of peptides binding to metallic borides by screening M13 phage display libraries.
    Ploss M; Facey SJ; Bruhn C; Zemel L; Hofmann K; Stark RW; Albert B; Hauer B
    BMC Biotechnol; 2014 Feb; 14():12. PubMed ID: 24512376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biopanning and characterization of peptides with Fe3O4 nanoparticles-binding capability via phage display random peptide library technique.
    You F; Yin G; Pu X; Li Y; Hu Y; Huang Z; Liao X; Yao Y; Chen X
    Colloids Surf B Biointerfaces; 2016 May; 141():537-545. PubMed ID: 26896661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QCM-D analysis of binding mechanism of phage particles displaying a constrained heptapeptide with specific affinity to SiO2 and TiO2.
    Chen H; Su X; Neoh KG; Choe WS
    Anal Chem; 2006 Jul; 78(14):4872-9. PubMed ID: 16841905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel approach for the synthesis of SnO2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds.
    Bhattacharjee A; Ahmaruzzaman M; Sinha T
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():751-60. PubMed ID: 25448974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of applied voltage on the structural properties of SnO2 nanostuctures grown on indium-tin-oxide coated glass substrates.
    Lee DU; Yun DY; No YS; Hwang JH; Lee CH; Kim TW
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7596-9. PubMed ID: 24245299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of citric acid on SnO2 nanoparticles synthesized by wet chemical processes.
    Sikhwivhilu LM; Pillai SK; Hillie TK
    J Nanosci Nanotechnol; 2011 Jun; 11(6):4988-94. PubMed ID: 21770132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.