BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 29210635)

  • 1. Potential Drug Targets in the Pentose Phosphate Pathway of Trypanosomatids.
    Loureiro I; Faria J; Santarem N; Smith TK; Tavares J; Cordeiro-da-Silva A
    Curr Med Chem; 2018; 25(39):5239-5265. PubMed ID: 29210635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting calcium homeostasis as the therapy of Chagas' disease and leishmaniasis - a review.
    Benaim B; Garcia CR
    Trop Biomed; 2011 Dec; 28(3):471-81. PubMed ID: 22433874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Overview on Target-Based Drug Design against Kinetoplastid Protozoan Infections: Human African Trypanosomiasis, Chagas Disease and Leishmaniases.
    Kourbeli V; Chontzopoulou E; Moschovou K; Pavlos D; Mavromoustakos T; Papanastasiou IP
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiol redox biology of trypanosomatids and potential targets for chemotherapy.
    Leroux AE; Krauth-Siegel RL
    Mol Biochem Parasitol; 2016; 206(1-2):67-74. PubMed ID: 26592324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sterol 14alpha-demethylase (CYP51) as a therapeutic target for human trypanosomiasis and leishmaniasis.
    Lepesheva GI; Waterman MR
    Curr Top Med Chem; 2011; 11(16):2060-71. PubMed ID: 21619513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The kinetoplastid chemotherapy revisited: current drugs, recent advances and future perspectives.
    Castillo E; Dea-Ayuela MA; Bolás-Fernández F; Rangel M; González-Rosende ME
    Curr Med Chem; 2010; 17(33):4027-51. PubMed ID: 20939823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parasite prolyl oligopeptidases and the challenge of designing chemotherapeuticals for Chagas disease, leishmaniasis and African trypanosomiasis.
    Bastos IM; Motta FN; Grellier P; Santana JM
    Curr Med Chem; 2013; 20(25):3103-15. PubMed ID: 23514419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose-6-phosphate dehydrogenase is the target for the trypanocidal action of human steroids.
    Gupta S; Cordeiro AT; Michels PA
    Mol Biochem Parasitol; 2011 Apr; 176(2):112-5. PubMed ID: 21185333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parasitology. Drugs to combat tropical protozoan parasites.
    Gelb MH; Hol WG
    Science; 2002 Jul; 297(5580):343-4. PubMed ID: 12130767
    [No Abstract]   [Full Text] [Related]  

  • 10. Novel compounds to combat trypanosomatid infections: a medicinal chemical perspective.
    González M; Cerecetto H
    Expert Opin Ther Pat; 2011 May; 21(5):699-715. PubMed ID: 21428846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas' disease, and leishmaniasis.
    Heby O; Persson L; Rentala M
    Amino Acids; 2007 Aug; 33(2):359-66. PubMed ID: 17610127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribose 5-phosphate isomerase B knockdown compromises Trypanosoma brucei bloodstream form infectivity.
    Loureiro I; Faria J; Clayton C; Macedo-Ribeiro S; Santarém N; Roy N; Cordeiro-da-Siva A; Tavares J
    PLoS Negl Trop Dis; 2015 Jan; 9(1):e3430. PubMed ID: 25568941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parasite Polyamines as Pharmaceutical Targets.
    Roberts S; Ullman B
    Curr Pharm Des; 2017; 23(23):3325-3341. PubMed ID: 28571553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytosolic NADPH homeostasis in glucose-starved procyclic Trypanosoma brucei relies on malic enzyme and the pentose phosphate pathway fed by gluconeogenic flux.
    Allmann S; Morand P; Ebikeme C; Gales L; Biran M; Hubert J; Brennand A; Mazet M; Franconi JM; Michels PA; Portais JC; Boshart M; Bringaud F
    J Biol Chem; 2013 Jun; 288(25):18494-505. PubMed ID: 23665470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ornithine decarboxylase and S-adenosylmethionine decarboxylase in trypanosomatids.
    Persson L
    Biochem Soc Trans; 2007 Apr; 35(Pt 2):314-7. PubMed ID: 17371268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting cysteine proteases in trypanosomatid disease drug discovery.
    Ferreira LG; Andricopulo AD
    Pharmacol Ther; 2017 Dec; 180():49-61. PubMed ID: 28579388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting Trypanothione Metabolism in Trypanosomatids.
    González-Montero MC; Andrés-Rodríguez J; García-Fernández N; Pérez-Pertejo Y; Reguera RM; Balaña-Fouce R; García-Estrada C
    Molecules; 2024 May; 29(10):. PubMed ID: 38792079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NADPH Producing Enzymes as Promising Drug Targets for Chagas Disease.
    Cordeiro AT
    Curr Med Chem; 2019; 26(36):6564-6571. PubMed ID: 30306853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drug discovery for the treatment of leishmaniasis, African sleeping sickness and Chagas disease.
    Future Med Chem; 2013 Oct; 5(15):1709-18. PubMed ID: 24144408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 16-bromoepiandrosterone, an activator of the mammalian immune system, inhibits glucose 6-phosphate dehydrogenase from Trypanosoma cruzi and is toxic to these parasites grown in culture.
    Cordeiro AT; Thiemann OH
    Bioorg Med Chem; 2010 Jul; 18(13):4762-8. PubMed ID: 20570159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.