BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29210673)

  • 1. Detecting beta-amyloid aggregation from time-resolved emission spectra.
    Alghamdi A; Vyshemirsky V; Birch DJS; Rolinski OJ
    Methods Appl Fluoresc; 2018 Jan; 6(2):024002. PubMed ID: 29210673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beta-amyloid oligomerisation monitored by intrinsic tyrosine fluorescence.
    Amaro M; Birch DJ; Rolinski OJ
    Phys Chem Chem Phys; 2011 Apr; 13(14):6434-41. PubMed ID: 21373703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tyrosine Photophysics During the Early Stages of β-Amyloid Aggregation Leading to Alzheimer's.
    Rolinski OJ; Wellbrock T; Birch DJ; Vyshemirsky V
    J Phys Chem Lett; 2015 Aug; 6(15):3116-20. PubMed ID: 26267211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of the Flavonoid Quercetin on β-Amyloid Aggregation Revealed by Intrinsic Fluorescence.
    Alghamdi A; Birch DJS; Vyshemirsky V; Rolinski OJ
    J Phys Chem B; 2022 Sep; 126(38):7229-7237. PubMed ID: 36121408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical aggregation concentration for the formation of early Amyloid-β (1-42) oligomers.
    Novo M; Freire S; Al-Soufi W
    Sci Rep; 2018 Jan; 8(1):1783. PubMed ID: 29379133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting beta-amyloid glycation by intrinsic fluorescence - Understanding the link between diabetes and Alzheimer's disease.
    Alghamdi A; Forbes S; Birch DJS; Vyshemirsky V; Rolinski OJ
    Arch Biochem Biophys; 2021 Jun; 704():108886. PubMed ID: 33887256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cu
    Alghamdi A; Wellbrock T; Birch DJS; Vyshemirsky V; Rolinski OJ
    Chemphyschem; 2019 Dec; 20(23):3181-3185. PubMed ID: 31539190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation States of A
    Festa G; Mallamace F; Sancesario GM; Corsaro C; Mallamace D; Fazio E; Arcidiacono L; Garcia Sakai V; Senesi R; Preziosi E; Sancesario G; Andreani C
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31450543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification.
    Kotler SA; Brender JR; Vivekanandan S; Suzuki Y; Yamamoto K; Monette M; Krishnamoorthy J; Walsh P; Cauble M; Holl MM; Marsh EN; Ramamoorthy A
    Sci Rep; 2015 Jul; 5():11811. PubMed ID: 26138908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-Time Monitoring of Alzheimer's-Related Amyloid Aggregation via Probe Enhancement-Fluorescence Correlation Spectroscopy.
    Guan Y; Cao KJ; Cantlon A; Elbel K; Theodorakis EA; Walsh DM; Yang J; Shah JV
    ACS Chem Neurosci; 2015 Sep; 6(9):1503-8. PubMed ID: 26212450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How do membranes initiate Alzheimer's Disease? Formation of toxic amyloid fibrils by the amyloid β-protein on ganglioside clusters.
    Matsuzaki K
    Acc Chem Res; 2014 Aug; 47(8):2397-404. PubMed ID: 25029558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring the aggregation processes of amyloid-β using a spin-labeled, fluorescent nitroxyl radical.
    Mito F; Yamasaki T; Ito Y; Yamato M; Mino H; Sadasue H; Shirahama C; Sakai K; Utsumi H; Yamada K
    Chem Commun (Camb); 2011 May; 47(17):5070-2. PubMed ID: 21442105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early detection of amyloid aggregation using intrinsic fluorescence.
    Rolinski OJ; Amaro M; Birch DJ
    Biosens Bioelectron; 2010 Jun; 25(10):2249-52. PubMed ID: 20362424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of a peptide probe for β-amyloid aggregates.
    Aoraha E; Candreva J; Kim JR
    Mol Biosyst; 2015 Aug; 11(8):2281-9. PubMed ID: 26073444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous measurement of a range of particle sizes during Aβ1-42 fibrillogenesis quantified using fluorescence correlation spectroscopy.
    Mittag JJ; Milani S; Walsh DM; Rädler JO; McManus JJ
    Biochem Biophys Res Commun; 2014 May; 448(2):195-9. PubMed ID: 24769478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The synaptic protein neuroligin-1 interacts with the amyloid β-peptide. Is there a role in Alzheimer's disease?
    Dinamarca MC; Weinstein D; Monasterio O; Inestrosa NC
    Biochemistry; 2011 Sep; 50(38):8127-37. PubMed ID: 21838267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Physico-chemical methods for studing β-amyloid aggregation].
    Radko SP; Khmeleva SA; Suprun EV; Kozin SA; Bodoev NV; Makarov AA; Archakov AI; Shumyantseva VV
    Biomed Khim; 2015; 61(2):203-18. PubMed ID: 25978387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of oligomers in the early phase of pH-induced aggregation of the Alzheimer Aβ(12-28) peptide [corrected].
    Mandal P; Eremina N; Barth A
    J Phys Chem B; 2012 Oct; 116(41):12389-97. PubMed ID: 22978560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial inclusion bodies of Alzheimer's disease β-amyloid peptides can be employed to study native-like aggregation intermediate states.
    Dasari M; Espargaro A; Sabate R; Lopez del Amo JM; Fink U; Grelle G; Bieschke J; Ventura S; Reif B
    Chembiochem; 2011 Feb; 12(3):407-23. PubMed ID: 21290543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysical comparison of soluble amyloid-β(1-42) protofibrils, oligomers, and protofilaments.
    Nichols MR; Colvin BA; Hood EA; Paranjape GS; Osborn DC; Terrill-Usery SE
    Biochemistry; 2015 Apr; 54(13):2193-204. PubMed ID: 25756466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.