These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 29210699)

  • 1. Scaling of nanofiltration membranes used for chromium(III) ions recovery from salt solutions.
    Kowalik-Klimczak A; Gierycz P
    Water Sci Technol; 2017 Dec; 76(11-12):3135-3141. PubMed ID: 29210699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of interaction between anionic surfactants and poly(piperazine-amide) nanofiltration membranes used for chromium(III) recovery from saline solution.
    Religa P; Kowalik-Klimczak A
    Water Sci Technol; 2015; 72(10):1803-9. PubMed ID: 26540542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Custom-Tailoring Loose Nanofiltration Membrane for Precise Biomolecule Fractionation: New Insight into Post-Treatment Mechanisms.
    Guo S; Chen X; Wan Y; Feng S; Luo J
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):13327-13337. PubMed ID: 32109041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of chromium (VI) ions from aqueous solutions using amine-impregnated TiO
    Gebru KA; Das C
    Chemosphere; 2018 Jan; 191():673-684. PubMed ID: 29078191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the membrane exclusion mechanism on phosphate scaling during synthetic effluent desalination.
    Kaganovich M; Zhang W; Freger V; Bernstein R
    Water Res; 2019 Sep; 161():381-391. PubMed ID: 31226537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective recovery of salt from coal gasification brine by nanofiltration membranes.
    Li K; Ma W; Han H; Xu C; Han Y; Wang D; Ma W; Zhu H
    J Environ Manage; 2018 Oct; 223():306-313. PubMed ID: 29935445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Antiswelling Loose Nanofiltration Membranes via a "Selective-Etching-Induced Reinforcing" Strategy for Bioseparation.
    Guo S; Zhang H; Chen X; Feng S; Wan Y; Luo J
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):19312-19323. PubMed ID: 33871259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of cross flow velocity, feed concentration, and pressure on the salt rejection of nanofiltration membranes in reactive dye having two sodium salts and NaCl mixtures: model application.
    Koyuncu I; Topacik D
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(4):1055-68. PubMed ID: 15137719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The negative rejection of H+ in NF of carbonate solution and its influences on membrane performance.
    Zhu A; Long F; Wang X; Zhu W; Ma J
    Chemosphere; 2007 Apr; 67(8):1558-65. PubMed ID: 17250866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation and application of a novel positively charged nanofiltration membrane for the treatment of textile industry wastewaters.
    Cheng S; Oatley DL; Williams PM; Wright CJ
    Water Res; 2012 Jan; 46(1):33-42. PubMed ID: 22078250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of ferric coagulant on gypsum scaling and ion interception efficiency in nanofiltration at different pH values: Performance and mechanism.
    Lin D; Bai L; Gan Z; Zhao J; Li G; Aminabhavi TM; Liang H
    Water Res; 2020 May; 175():115695. PubMed ID: 32172057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of solution chemistry and operating conditions on the nanofiltration of acid dyes by a nanocomposite membrane.
    Akbari A; Homayoonfal M; Jabbari V
    Water Sci Technol; 2011; 64(12):2404-9. PubMed ID: 22170834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors influencing flux decline during nanofiltration of solutions containing dyes and salts.
    Koyuncu I; Topacik D; Wiesner MR
    Water Res; 2004 Jan; 38(2):432-40. PubMed ID: 14675655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of chlorine exposure conditions on physiochemical properties and performance of a polyamide membrane--mechanisms and implications.
    Do VT; Tang CY; Reinhard M; Leckie JO
    Environ Sci Technol; 2012 Dec; 46(24):13184-92. PubMed ID: 23214945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel chitosan based thin sheet nanofiltration membrane for rejection of heavy metal chromium.
    K S; P AV; P N S; Faleh A A; Sukumaran A
    Int J Biol Macromol; 2019 Jul; 132():939-953. PubMed ID: 30951777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanofiltration membranes for salt and dye filtration: effect of membrane properties on performances.
    Ağtaş M; Ormancı-Acar T; Keskin B; Türken T; Koyuncu İ
    Water Sci Technol; 2021 May; 83(9):2146-2159. PubMed ID: 33989182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of three-bore hollow fiber charged nanofiltration membrane for separation of organics and salts.
    Deng J; Zhang Y; Liu J; Zhang H
    Water Sci Technol; 2012; 65(1):171-6. PubMed ID: 22173422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of Cd and Ni from multicomponent aqueous solutions by nanofiltration and characterization of membrane using IT model.
    Chaudhari LB; Murthy ZV
    J Hazard Mater; 2010 Aug; 180(1-3):309-15. PubMed ID: 20452729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes.
    Yüksel S; Kabay N; Yüksel M
    J Hazard Mater; 2013 Dec; 263 Pt 2():307-10. PubMed ID: 23731784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the "DSPM" model on a titania membrane: measurements of charged and uncharged solute retention, electrokinetic charge, pore size, and water permeability.
    Labbez C; Fievet P; Thomas F; Szymczyk A; Vidonne A; Foissy A; Pagetti P
    J Colloid Interface Sci; 2003 Jun; 262(1):200-11. PubMed ID: 16256596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.