BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 29211056)

  • 1. Krebs cycle metabolites and preferential succinate oxidation following neonatal hypoxic-ischemic brain injury in mice.
    Sahni PV; Zhang J; Sosunov S; Galkin A; Niatsetskaya Z; Starkov A; Brookes PS; Ten VS
    Pediatr Res; 2018 Feb; 83(2):491-497. PubMed ID: 29211056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isoflurane anesthesia initiated at the onset of reperfusion attenuates oxidative and hypoxic-ischemic brain injury.
    Sosunov SA; Ameer X; Niatsetskaya ZV; Utkina-Sosunova I; Ratner VI; Ten VS
    PLoS One; 2015; 10(3):e0120456. PubMed ID: 25799166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of Succinate in Cardiac Ischemia Primarily Occurs via Canonical Krebs Cycle Activity.
    Zhang J; Wang YT; Miller JH; Day MM; Munger JC; Brookes PS
    Cell Rep; 2018 May; 23(9):2617-2628. PubMed ID: 29847793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox-Dependent Loss of Flavin by Mitochondrial Complex I in Brain Ischemia/Reperfusion Injury.
    Stepanova A; Sosunov S; Niatsetskaya Z; Konrad C; Starkov AA; Manfredi G; Wittig I; Ten V; Galkin A
    Antioxid Redox Signal; 2019 Sep; 31(9):608-622. PubMed ID: 31037949
    [No Abstract]   [Full Text] [Related]  

  • 5. Production of reactive oxygen species by mitochondria: central role of complex III.
    Chen Q; Vazquez EJ; Moghaddas S; Hoppel CL; Lesnefsky EJ
    J Biol Chem; 2003 Sep; 278(38):36027-31. PubMed ID: 12840017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS.
    Chouchani ET; Pell VR; Gaude E; Aksentijević D; Sundier SY; Robb EL; Logan A; Nadtochiy SM; Ord ENJ; Smith AC; Eyassu F; Shirley R; Hu CH; Dare AJ; James AM; Rogatti S; Hartley RC; Eaton S; Costa ASH; Brookes PS; Davidson SM; Duchen MR; Saeb-Parsy K; Shattock MJ; Robinson AJ; Work LM; Frezza C; Krieg T; Murphy MP
    Nature; 2014 Nov; 515(7527):431-435. PubMed ID: 25383517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria.
    Chen Q; Moghaddas S; Hoppel CL; Lesnefsky EJ
    Am J Physiol Cell Physiol; 2008 Feb; 294(2):C460-6. PubMed ID: 18077608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased Succinate Accumulation Induces ROS Generation in
    Kamarauskaite J; Baniene R; Trumbeckas D; Strazdauskas A; Trumbeckaite S
    Biomed Res Int; 2020; 2020():8855585. PubMed ID: 33102598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ischemic preconditioning protects against cardiac ischemia reperfusion injury without affecting succinate accumulation or oxidation.
    Pell VR; Spiroski AM; Mulvey J; Burger N; Costa ASH; Logan A; Gruszczyk AV; Rosa T; James AM; Frezza C; Murphy MP; Krieg T
    J Mol Cell Cardiol; 2018 Oct; 123():88-91. PubMed ID: 30118790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive oxygen species are generated by the respiratory complex II--evidence for lack of contribution of the reverse electron flow in complex I.
    Moreno-Sánchez R; Hernández-Esquivel L; Rivero-Segura NA; Marín-Hernández A; Neuzil J; Ralph SJ; Rodríguez-Enríquez S
    FEBS J; 2013 Feb; 280(3):927-38. PubMed ID: 23206332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen-dependence of mitochondrial ROS production as detected by Amplex Red assay.
    Grivennikova VG; Kareyeva AV; Vinogradov AD
    Redox Biol; 2018 Jul; 17():192-199. PubMed ID: 29702406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deactivation of mitochondrial complex I after hypoxia-ischemia in the immature brain.
    Stepanova A; Konrad C; Guerrero-Castillo S; Manfredi G; Vannucci S; Arnold S; Galkin A
    J Cereb Blood Flow Metab; 2019 Sep; 39(9):1790-1802. PubMed ID: 29629602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
    Siebels I; Dröse S
    Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dependence of brain mitochondria reactive oxygen species production on oxygen level is linear, except when inhibited by antimycin A.
    Stepanova A; Konrad C; Manfredi G; Springett R; Ten V; Galkin A
    J Neurochem; 2019 Mar; 148(6):731-745. PubMed ID: 30582748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of electron-transport inhibitors on the generation of reactive oxygen species by pea mitochondria during succinate oxidation.
    Popov VN; Ruuge EK; Starkov AA
    Biochemistry (Mosc); 2003 Jul; 68(7):747-51. PubMed ID: 12946256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The oxygen free radicals originating from mitochondrial complex I contribute to oxidative brain injury following hypoxia-ischemia in neonatal mice.
    Niatsetskaya ZV; Sosunov SA; Matsiukevich D; Utkina-Sosunova IV; Ratner VI; Starkov AA; Ten VS
    J Neurosci; 2012 Feb; 32(9):3235-44. PubMed ID: 22378894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of bioenergetics, temperature and cadmium on liver mitochondria reactive oxygen species production and consumption.
    Okoye CN; MacDonald-Jay N; Kamunde C
    Aquat Toxicol; 2019 Sep; 214():105264. PubMed ID: 31377504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manganese ions enhance mitochondrial H
    Bonke E; Siebels I; Zwicker K; Dröse S
    Free Radic Biol Med; 2016 Oct; 99():43-53. PubMed ID: 27474449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of isoflurane on complex II‑associated mitochondrial respiration and reactive oxygen species production: Roles of nitric oxide and mitochondrial KATP channels.
    Wang J; Sun J; Qiao S; Li H; Che T; Wang C; An J
    Mol Med Rep; 2019 Nov; 20(5):4383-4390. PubMed ID: 31545457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.