These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 29211064)

  • 1. Controlling the lectin recognition of glycopolymers via distance arrangement of sugar blocks.
    Jono K; Nagao M; Oh T; Sonoda S; Hoshino Y; Miura Y
    Chem Commun (Camb); 2017 Dec; 54(1):82-85. PubMed ID: 29211064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protecting-Group-Free Synthesis of Glycopolymers and Their Binding Assay with Lectin and Influenza Virus.
    Tanaka T; Takahashi T; Suzuki T
    Methods Mol Biol; 2016; 1367():39-48. PubMed ID: 26537463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of Glycopolymers Carrying Sialyl Oligosaccharides for Controlling the Interaction with the Influenza Virus.
    Nagao M; Fujiwara Y; Matsubara T; Hoshino Y; Sato T; Miura Y
    Biomacromolecules; 2017 Dec; 18(12):4385-4392. PubMed ID: 29111681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of amphiphilic glycopolymers with flexible long side chain and their use as stabilizer for emulsion polymerization.
    Alvárez-Paino M; Juan-Rodríguez R; Cuervo-Rodríguez R; Muñoz-Bonilla A; Fernández-García M
    J Colloid Interface Sci; 2014 Mar; 417():336-45. PubMed ID: 24407696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycopolymers Bearing Galactose and Betulin: Synthesis, Encapsulation, and Lectin Recognition.
    Ma Z; Jia YG; Zhu XX
    Biomacromolecules; 2017 Nov; 18(11):3812-3818. PubMed ID: 28982003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence-Controlled Glycopolymers via Step-Growth Polymerization of Precision Glycomacromolecules for Lectin Receptor Clustering.
    Gerke C; Ebbesen MF; Jansen D; Boden S; Freichel T; Hartmann L
    Biomacromolecules; 2017 Mar; 18(3):787-796. PubMed ID: 28117986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topological Design of Star Glycopolymers for Controlling the Interaction with the Influenza Virus.
    Nagao M; Matsubara T; Hoshino Y; Sato T; Miura Y
    Bioconjug Chem; 2019 Apr; 30(4):1192-1198. PubMed ID: 30860815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycopolymer brushes for specific lectin binding by controlled multivalent presentation of N-acetyllactosamine glycan oligomers.
    Park H; Rosencrantz RR; Elling L; Böker A
    Macromol Rapid Commun; 2015 Jan; 36(1):45-54. PubMed ID: 25354386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycopolymer-Grafted Polymer Particles for Lectin Recognition.
    Kohri M; Taniguchi T; Kishikawa K
    Methods Mol Biol; 2016; 1367():137-47. PubMed ID: 26537470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The glycopolymer code: synthesis of glycopolymers and multivalent carbohydrate-lectin interactions.
    Becer CR
    Macromol Rapid Commun; 2012 May; 33(9):742-52. PubMed ID: 22508520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RAFT-based tri-component fluorescent glycopolymers: synthesis, characterization and application in lectin-mediated bacterial binding study.
    Wang W; Chance DL; Mossine VV; Mawhinney TP
    Glycoconj J; 2014 Feb; 31(2):133-43. PubMed ID: 24218180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile and Efficient Preparation of Tri-component Fluorescent Glycopolymers via RAFT-controlled Polymerization.
    Wang W; Lester JM; Amorosa AE; Chance DL; Mossine VV; Mawhinney TP
    J Vis Exp; 2015 Jun; (100):e52922. PubMed ID: 26132587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregation of a double hydrophilic block glycopolymer: the effect of block polymer ratio.
    Oh T; Hoshino Y; Miura Y
    J Mater Chem B; 2020 Nov; 8(44):10101-10107. PubMed ID: 33112358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Step-Growth Glycopolymers with a Defined Tacticity for Selective Carbohydrate-Lectin Recognition.
    Becker J; Terracciano R; Yilmaz G; Napier R; Becer CR
    Biomacromolecules; 2023 Apr; 24(4):1924-1933. PubMed ID: 36976928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbohydrate-Conjugated Amino Acid-Based Fluorescent Block Copolymers: Their Self-Assembly, pH Responsiveness, and/or Lectin Recognition.
    Kumar S; Maiti B; De P
    Langmuir; 2015 Sep; 31(34):9422-31. PubMed ID: 26259117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-pot synthesis of thermosensitive glycopolymers grafted gold nanoparticles and their lectin recognition.
    Shen FW; Zhou KC; Cai H; Zhang YN; Zheng YL; Quan J
    Colloids Surf B Biointerfaces; 2019 Jan; 173():504-511. PubMed ID: 30340178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic glycopolymers tethered gold nanoparticles: preparation, self-assembly and lectin recognition properties.
    Pei D; Li Y; Huang Q; Ren Q; Li F; Shi T
    Colloids Surf B Biointerfaces; 2015 Feb; 126():367-73. PubMed ID: 25533190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ROMP-based Glycopolymers with High Affinity for Mannose-Binding Lectins.
    Gonnot C; Scalabrini M; Roubinet B; Ziane C; Boeda F; Deniaud D; Landemarre L; Gouin SG; Fontaine L; Montembault V
    Biomacromolecules; 2023 Aug; 24(8):3689-3699. PubMed ID: 37471408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorogenic glycopolymers available for determining the affinity of lectins by intermolecular FRET.
    Matsuoka K; Suzuki Y; Koyama T; Matsushita T; Hatano K
    Bioorg Med Chem Lett; 2020 Apr; 30(8):127024. PubMed ID: 32098722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbohydrate-based amphiphilic diblock copolymers with pyridine for the sensitive detection of protein binding.
    Otsuka H; Hagiwara T; Yamamoto S
    J Nanosci Nanotechnol; 2014 Sep; 14(9):6764-73. PubMed ID: 25924328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.