BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 29211067)

  • 1. Branched peptides for enzymatic supramolecular hydrogelation.
    He H; Wang H; Zhou N; Yang D; Xu B
    Chem Commun (Camb); 2017 Dec; 54(1):86-89. PubMed ID: 29211067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme-instructed self-assembly of the stereoisomers of pentapeptides to form biocompatible supramolecular hydrogels.
    Shy AN; Li J; Shi J; Zhou N; Xu B
    J Drug Target; 2020; 28(7-8):760-765. PubMed ID: 32668995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc-triggered hydrogelation of a self-assembling β-hairpin peptide.
    Micklitsch CM; Knerr PJ; Branco MC; Nagarkar R; Pochan DJ; Schneider JP
    Angew Chem Int Ed Engl; 2011 Feb; 50(7):1577-9. PubMed ID: 21308908
    [No Abstract]   [Full Text] [Related]  

  • 4. C-Terminal Residue of Ultrashort Peptides Impacts on Molecular Self-Assembly, Hydrogelation, and Interaction with Small-Molecule Drugs.
    Chan KH; Lee WH; Ni M; Loo Y; Hauser CAE
    Sci Rep; 2018 Nov; 8(1):17127. PubMed ID: 30459362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ratio of hydrogelator to precursor controls the enzymatic hydrogelation of a branched peptide.
    Guo J; He H; Kim BJ; Wang J; Yi M; Lin C; Xu B
    Soft Matter; 2020 Nov; 16(44):10101-10105. PubMed ID: 32785414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introducing D-amino acid or simple glycoside into small peptides to enable supramolecular hydrogelators to resist proteolysis.
    Li X; Du X; Li J; Gao Y; Pan Y; Shi J; Zhou N; Xu B
    Langmuir; 2012 Sep; 28(37):13512-7. PubMed ID: 22906360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tripeptide Self-Assembly into Bioactive Hydrogels: Effects of Terminus Modification on Biocatalysis.
    Kurbasic M; Garcia AM; Viada S; Marchesan S
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33396543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covalent co-assembly between resilin-like polypeptide and peptide amphiphile into hydrogels with controlled nanostructure and improved mechanical properties.
    Okesola BO; Lau HK; Derkus B; Boccorh DK; Wu Y; Wark AW; Kiick KL; Mata A
    Biomater Sci; 2020 Feb; 8(3):846-857. PubMed ID: 31793933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dephosphorylation of D-peptide derivatives to form biofunctional, supramolecular nanofibers/hydrogels and their potential applications for intracellular imaging and intratumoral chemotherapy.
    Li J; Gao Y; Kuang Y; Shi J; Du X; Zhou J; Wang H; Yang Z; Xu B
    J Am Chem Soc; 2013 Jul; 135(26):9907-14. PubMed ID: 23742714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Unexpected Advantages of Using D-Amino Acids for Peptide Self- Assembly into Nanostructured Hydrogels for Medicine.
    Melchionna M; Styan KE; Marchesan S
    Curr Top Med Chem; 2016; 16(18):2009-18. PubMed ID: 26876522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gd(III)-induced Supramolecular Hydrogelation with Enhanced Magnetic Resonance Performance for Enzyme Detection.
    Hua Y; Pu G; Ou C; Zhang X; Wang L; Sun J; Yang Z; Chen M
    Sci Rep; 2017 Jan; 7():40172. PubMed ID: 28074904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme-Instructed Self-Assembly of Peptides Containing Phosphoserine to Form Supramolecular Hydrogels as Potential Soft Biomaterials.
    Zhou J; Du X; Wang J; Yamagata N; Xu B
    Front Chem Sci Eng; 2017 Dec; 11(4):509-515. PubMed ID: 29403673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning Supramolecular Chirality in Iodinated Amphiphilic Peptides Through Tripeptide Linker Editing.
    MacPherson DS; Dave D; Kassem S; Doganata S; Zeglis BM; Ulijn RV
    Biomacromolecules; 2024 Apr; 25(4):2277-2285. PubMed ID: 38445833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design of MMP degradable peptide-based supramolecular filaments.
    Lin YA; Ou YC; Cheetham AG; Cui H
    Biomacromolecules; 2014 Apr; 15(4):1419-27. PubMed ID: 24611531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Assembly, Bioactivity, and Nanomaterials Applications of Peptide Conjugates with Bulky Aromatic Terminal Groups.
    Hamley IW
    ACS Appl Bio Mater; 2023 Feb; 6(2):384-409. PubMed ID: 36735801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic noncovalent synthesis of peptide assemblies generates multimolecular crowding in cells for biomedical applications.
    Yi M; Tan W; Guo J; Xu B
    Chem Commun (Camb); 2021 Dec; 57(96):12870-12879. PubMed ID: 34817487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic Noncovalent Synthesis for Mitochondrial Genetic Engineering of Cancer Cells.
    He H; Lin X; Wu D; Wang J; Guo J; Green DR; Zhang H; Xu B
    Cell Rep Phys Sci; 2020 Dec; 1(12):. PubMed ID: 33511360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. (Macro)molecular self-assembly for hydrogel drug delivery.
    Webber MJ; Pashuck ET
    Adv Drug Deliv Rev; 2021 May; 172():275-295. PubMed ID: 33450330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme-instructed morphological transition of the supramolecular assemblies of branched peptides.
    Yang D; He H; Xu B
    Beilstein J Org Chem; 2020; 16():2709-2718. PubMed ID: 33214796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomaterials based on noncovalent interactions of small molecules.
    Guo J; Tian C; Xu B
    EXCLI J; 2020; 19():1124-1140. PubMed ID: 33088250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.