These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29211072)

  • 21. On interfacial viscosity in nanochannels.
    Nazari M; Davoodabadi A; Huang D; Luo T; Ghasemi H
    Nanoscale; 2020 Jul; 12(27):14626-14635. PubMed ID: 32614001
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interlink between Abnormal Water Imbibition in Hydrophilic and Rapid Flow in Hydrophobic Nanochannels.
    Zhou R; Neek-Amal M; Peeters FM; Bai B; Sun C
    Phys Rev Lett; 2024 May; 132(18):184001. PubMed ID: 38759191
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spontaneous Imbibition in Nanomatrix-Fracture of Low Permeability Using Multiscale Nanofluidic Chips.
    Qin W; Guo Y; Sun L; Shi J; Bao B
    Langmuir; 2023 Dec; 39(49):17972-17983. PubMed ID: 38037241
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Criteria for Applying the Lucas-Washburn Law.
    Li K; Zhang D; Bian H; Meng C; Yang Y
    Sci Rep; 2015 Sep; 5():14085. PubMed ID: 26364749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Capillary rise dynamics of aqueous glycerol solutions in glass capillaries: a critical examination of the Washburn equation.
    O'Loughlin M; Wilk K; Priest C; Ralston J; Popescu MN
    J Colloid Interface Sci; 2013 Dec; 411():257-64. PubMed ID: 24041546
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analytical approach for the Lucas-Washburn equation.
    Hamraoui A; Nylander T
    J Colloid Interface Sci; 2002 Jun; 250(2):415-21. PubMed ID: 16290679
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Fluid Properties on Contact Angles in the Eagle Ford Shale Measured with Spontaneous Imbibition.
    McFarlane J; DiStefano VH; Bingham PR; Bilheux HZ; Cheshire MC; Hale RE; Hussey DS; Jacobson DL; Kolbus L; LaManna JM; Perfect E; Rivers M; Santodonato LJ; Anovitz LM
    ACS Omega; 2021 Dec; 6(48):32618-32630. PubMed ID: 34901610
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Capillary Imbibition of Binary Fluid Mixtures in Nanochannels.
    Hulikal Chakrapani T; den Otter WK
    Langmuir; 2020 Oct; 36(42):12712-12722. PubMed ID: 32993296
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An experimental study about the imbibition of aqueous solutions of low concentration of a non-adsorbable surfactant in a hydrophilic porous medium.
    Labajos-Broncano L; Antequera-Barroso JA; González-Martín ML; Bruque JM
    J Colloid Interface Sci; 2006 Sep; 301(1):323-8. PubMed ID: 16737705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Capillary Imbibition into Converging Tubes: Beating Washburn's Law and the Optimal Imbibition of Liquids.
    Gorce JB; Hewitt IJ; Vella D
    Langmuir; 2016 Feb; 32(6):1560-7. PubMed ID: 26784118
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Capillary rise of water in hydrophilic nanopores.
    Gruener S; Hofmann T; Wallacher D; Kityk AV; Huber P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):067301. PubMed ID: 19658631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics of transient oil flows in nanopores I: Imbibition speeds for single wall carbon nanotubes.
    Supple S; Quirke N
    J Chem Phys; 2004 Nov; 121(17):8571-9. PubMed ID: 15511182
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interplay of vapor adsorption and liquid imbibition in nanoporous Vycor glass.
    Kiepsch S; Pelster R
    Phys Rev E; 2016 Apr; 93():043128. PubMed ID: 27176411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Competitive spreading versus imbibition of polymer liquid drops in nanoporous membranes: scaling behavior with viscosity.
    Haidara H; Lebeau B; Grzelakowski C; Vonna L; Biguenet F; Vidal L
    Langmuir; 2008 Apr; 24(8):4209-14. PubMed ID: 18302434
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spontaneous Imbibition of Capillaries under the End Effect and Wetting Hysteresis.
    Zhang L; Wang K; An H; Li G; Su Y; Zhang W; Yang X
    ACS Omega; 2022 Feb; 7(5):4363-4371. PubMed ID: 35155929
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrodynamics of capillary imbibition under nanoconfinement.
    Stroberg W; Keten S; Liu WK
    Langmuir; 2012 Oct; 28(40):14488-95. PubMed ID: 22931154
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Near-surface viscosity effects on capillary rise of water in nanotubes.
    Vo TQ; Barisik M; Kim B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053009. PubMed ID: 26651781
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Capillary rise in nanopores: molecular dynamics evidence for the Lucas-Washburn equation.
    Dimitrov DI; Milchev A; Binder K
    Phys Rev Lett; 2007 Aug; 99(5):054501. PubMed ID: 17930760
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular Dynamics Simulations of Lubricant Recycling in Porous Polyimide Retainers of Bearing.
    Chen W; Zhu P; Liang H; Wang W
    Langmuir; 2021 Feb; 37(7):2426-2435. PubMed ID: 33560132
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface hydration drives rapid water imbibition into strongly hydrophilic nanopores.
    Fang C; Qiao R
    Phys Chem Chem Phys; 2017 Aug; 19(31):20506-20512. PubMed ID: 28726859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.