BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 29211446)

  • 21. Sandwich-type photoelectrochemical immunosensor for procalcitonin detection based on Mn
    Wang H; Wang M; Chi H; Zhang S; Wang Y; Wu D; Wei Q
    Anal Chim Acta; 2021 Dec; 1188():339190. PubMed ID: 34794572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An amplified electrochemical immunosensor based on in situ-produced 1-naphthol as electroactive substance and graphene oxide and Pt nanoparticles functionalized CeO2 nanocomposites as signal enhancer.
    Yang ZH; Zhuo Y; Yuan R; Chai YQ
    Biosens Bioelectron; 2015 Jul; 69():321-7. PubMed ID: 25791337
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rational design of a stable peroxidase mimic for colorimetric detection of H
    Cheng X; Huang L; Yang X; Elzatahry AA; Alghamdi A; Deng Y
    J Colloid Interface Sci; 2019 Feb; 535():425-435. PubMed ID: 30317083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Label-Free Electrochemiluminescent Immunosensor for Detection of Carcinoembryonic Antigen Based on Nanocomposites of GO/MWCNTs-COOH/Au@CeO₂.
    Pang X; Li J; Zhao Y; Wu D; Zhang Y; Du B; Ma H; Wei Q
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19260-7. PubMed ID: 26271682
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bimetallic cerium/copper organic framework-derived cerium and copper oxides embedded by mesoporous carbon: Label-free aptasensor for ultrasensitive tobramycin detection.
    Wang S; Li Z; Duan F; Hu B; He L; Wang M; Zhou N; Jia Q; Zhang Z
    Anal Chim Acta; 2019 Jan; 1047():150-162. PubMed ID: 30567645
    [TBL] [Abstract][Full Text] [Related]  

  • 26. C60 carboxyfullerene-based functionalised nanohybrids as signal-amplifying tags for the ultrasensitive electrochemical detection of procalcitonin.
    Li P; Zhang W; Zhou X; Zhang L
    Clin Biochem; 2015 Feb; 48(3):156-61. PubMed ID: 25280812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new sight for detecting the ADRB1 gene mutation to guide a therapeutic regimen for hypertension based on a CeO
    Zhao Y; He J; Niu Y; Chen J; Wu J; Yu C
    Biosens Bioelectron; 2017 Jun; 92():402-409. PubMed ID: 27829563
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasensitive electrochemical immunosensor for carbohydrate antigen 19-9 using Au/porous graphene nanocomposites as platform and Au@Pd core/shell bimetallic functionalized graphene nanocomposites as signal enhancers.
    Yang F; Yang Z; Zhuo Y; Chai Y; Yuan R
    Biosens Bioelectron; 2015 Apr; 66():356-62. PubMed ID: 25463643
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzyme-free electrochemical immunosensor based on host-guest nanonets catalyzing amplification for procalcitonin detection.
    Shen WJ; Zhuo Y; Chai YQ; Yang ZH; Han J; Yuan R
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4127-34. PubMed ID: 25629216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemical immunoassay for procalcitonin antigen detection based on signal amplification strategy of multiple nanocomposites.
    Fang YS; Wang HY; Wang LS; Wang JF
    Biosens Bioelectron; 2014 Jan; 51():310-6. PubMed ID: 23978454
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrasensitive microfluidic paper-based electrochemical/visual biosensor based on spherical-like cerium dioxide catalyst for miR-21 detection.
    Sun X; Wang H; Jian Y; Lan F; Zhang L; Liu H; Ge S; Yu J
    Biosens Bioelectron; 2018 May; 105():218-225. PubMed ID: 29412946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A sensitive electrochemical immunosensor based on high-efficiency catalytic cycle amplification strategy for detection of cardiac troponin I.
    Jiang F; Meng Y; Mo M; Li Y; Liu Q; Wang P; Li Y; Wei Q
    Bioelectrochemistry; 2024 Oct; 159():108730. PubMed ID: 38762950
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly dispersed CeO₂ on TiO₂ nanotube: a synergistic nanocomposite with superior peroxidase-like activity.
    Zhao H; Dong Y; Jiang P; Wang G; Zhang J
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6451-61. PubMed ID: 25774435
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A label-free and highly sensitive DNA biosensor based on the core-shell structured CeO
    Nguyet NT; Yen LTH; Doan VY; Hoang NL; Van Thu V; Lan H; Trung T; Pham VH; Tam PD
    Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():790-797. PubMed ID: 30606592
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cerium dioxide-doped carboxyl fullerene as novel nanoprobe and catalyst in electrochemical biosensor for amperometric detection of the CYP2C19*2 allele in human serum.
    Zhang C; He J; Zhang Y; Chen J; Zhao Y; Niu Y; Yu C
    Biosens Bioelectron; 2018 Apr; 102():94-100. PubMed ID: 29127901
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cerium oxide-triggered 'one-to-many' catalytic cycling strategy for in situ amplified electronic signal of low-abundance protein.
    Tang J; Chen X; Zhou J; Li Q; Chen G; Tang D
    Analyst; 2013 Aug; 138(15):4327-33. PubMed ID: 23767049
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NiCoO
    Cao L; Cai J; Deng W; Tan Y; Xie Q
    Anal Chem; 2020 Dec; 92(24):16267-16273. PubMed ID: 33231425
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel CeO2-CuO-decorated enzymatic lactate biosensors operating in low oxygen environments.
    Uzunoglu A; Stanciu LA
    Anal Chim Acta; 2016 Feb; 909():121-8. PubMed ID: 26851092
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts.
    Saravanan R; Joicy S; Gupta VK; Narayanan V; Stephen A
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4725-31. PubMed ID: 24094180
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Examination of oxygen vacancy formation in Mn-doped CeO2 (111) using DFT+U and the hybrid functional HSE06.
    Krcha MD; Janik MJ
    Langmuir; 2013 Aug; 29(32):10120-31. PubMed ID: 23848253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.