BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 29211807)

  • 1. Null diffusion-based enrichment for metabolomics data.
    Picart-Armada S; Fernández-Albert F; Vinaixa M; Rodríguez MA; Aivio S; Stracker TH; Yanes O; Perera-Lluna A
    PLoS One; 2017; 12(12):e0189012. PubMed ID: 29211807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FELLA: an R package to enrich metabolomics data.
    Picart-Armada S; Fernández-Albert F; Vinaixa M; Yanes O; Perera-Lluna A
    BMC Bioinformatics; 2018 Dec; 19(1):538. PubMed ID: 30577788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated pathway and reaction prediction facilitates in silico identification of unknown metabolites in human cohort studies.
    Quell JD; Römisch-Margl W; Colombo M; Krumsiek J; Evans AM; Mohney R; Salomaa V; de Faire U; Groop LC; Agakov F; Looker HC; McKeigue P; Colhoun HM; Kastenmüller G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Dec; 1071():58-67. PubMed ID: 28479069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recoupled-STOCSY-based co-expression network analysis to extract phenotype-driven metabolite modules in NMR-based metabolomics dataset.
    Liu W; Shi X; Dai T; Shen G; Feng J
    Anal Chim Acta; 2022 Mar; 1197():339528. PubMed ID: 35168737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolomics analysis: Finding out metabolic building blocks.
    Alberich R; Castro JA; Llabrés M; Palmer-Rodríguez P
    PLoS One; 2017; 12(5):e0177031. PubMed ID: 28493998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional statistical recoupling for the identification of perturbed metabolic networks from NMR spectroscopy.
    Blaise BJ; Navratil V; Domange C; Shintu L; Dumas ME; Elena-Herrmann B; Emsley L; Toulhoat P
    J Proteome Res; 2010 Sep; 9(9):4513-20. PubMed ID: 20590164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Urinary metabolomics of pregnant women at term: a combined GC/MS and NMR approach.
    Caboni P; Meloni A; Lussu M; Carta E; Barberini L; Noto A; Deiana SF; Mereu R; Ragusa A; Paoletti AM; Melis GB; Fanos V; Atzori L
    J Matern Fetal Neonatal Med; 2014 Oct; 27 Suppl 2():4-12. PubMed ID: 25284171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathway size matters: the influence of pathway granularity on over-representation (enrichment analysis) statistics.
    Karp PD; Midford PE; Caspi R; Khodursky A
    BMC Genomics; 2021 Mar; 22(1):191. PubMed ID: 33726670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultraperformance liquid chromatography-mass spectrometry based comprehensive metabolomics combined with pattern recognition and network analysis methods for characterization of metabolites and metabolic pathways from biological data sets.
    Zhang AH; Sun H; Han Y; Yan GL; Yuan Y; Song GC; Yuan XX; Xie N; Wang XJ
    Anal Chem; 2013 Aug; 85(15):7606-12. PubMed ID: 23845028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolomics for undergraduates: Identification and pathway assignment of mitochondrial metabolites.
    Marques AP; Serralheiro ML; Ferreira AE; Freire AP; Cordeiro C; Silva MS
    Biochem Mol Biol Educ; 2016; 44(1):38-54. PubMed ID: 26537432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MetPA: a web-based metabolomics tool for pathway analysis and visualization.
    Xia J; Wishart DS
    Bioinformatics; 2010 Sep; 26(18):2342-4. PubMed ID: 20628077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NET-GE: a novel NETwork-based Gene Enrichment for detecting biological processes associated to Mendelian diseases.
    Di Lena P; Martelli PL; Fariselli P; Casadio R
    BMC Genomics; 2015; 16 Suppl 8(Suppl 8):S6. PubMed ID: 26110971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postprandial metabolomics: A pilot mass spectrometry and NMR study of the human plasma metabolome in response to a challenge meal.
    Karimpour M; Surowiec I; Wu J; Gouveia-Figueira S; Pinto R; Trygg J; Zivkovic AM; Nording ML
    Anal Chim Acta; 2016 Feb; 908():121-31. PubMed ID: 26826694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of targeted metabolomics: dominance-based rough set approach versus orthogonal partial least square-discriminant analysis.
    Blasco H; Błaszczyński J; Billaut JC; Nadal-Desbarats L; Pradat PF; Devos D; Moreau C; Andres CR; Emond P; Corcia P; Słowiński R
    J Biomed Inform; 2015 Feb; 53():291-9. PubMed ID: 25499899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyzing methods for path mining with applications in metabolomics.
    Tagore S; Chowdhury N; De RK
    Gene; 2014 Jan; 534(2):125-38. PubMed ID: 24230973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR-based metabolomics: a probe to utilize biodiversity.
    Pimenta LP; Kim HK; Verpoorte R; Choi YH
    Methods Mol Biol; 2013; 1055():117-27. PubMed ID: 23963907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR-based metabolomics: from sample preparation to applications in nutrition research.
    Brennan L
    Prog Nucl Magn Reson Spectrosc; 2014 Nov; 83():42-9. PubMed ID: 25456316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secondary Metabolic Pathway-Targeted Metabolomics.
    Vizcaino MI; Crawford JM
    Methods Mol Biol; 2016; 1401():175-95. PubMed ID: 26831709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of time course 1H NMR metabolomics data by multivariate curve resolution.
    Karakach TK; Knight R; Lenz EM; Viant MR; Walter JA
    Magn Reson Chem; 2009 Dec; 47 Suppl 1():S105-17. PubMed ID: 19899105
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.