BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29211931)

  • 1. The role of microsomal epoxide hydrolase, Na
    Levy D
    Hepatology; 2018 Mar; 67(3):1184-1185. PubMed ID: 29211931
    [No Abstract]   [Full Text] [Related]  

  • 2. Molecular and functional characterization of bile acid transport in human hepatoblastoma HepG2 cells.
    Kullak-Ublick GA; Beuers U; Paumgartner G
    Hepatology; 1996 May; 23(5):1053-60. PubMed ID: 8621133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the transport properties of organic anion transporting polypeptide 1 (oatp1) and Na(+)/taurocholate cotransporting polypeptide (Ntcp): comparative studies on the inhibitory effect of their possible substrates in hepatocytes and cDNA-transfected COS-7 cells.
    Kouzuki H; Suzuki H; Stieger B; Meier PJ; Sugiyama Y
    J Pharmacol Exp Ther; 2000 Feb; 292(2):505-11. PubMed ID: 10640286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between the microsomal epoxide hydrolase and the hepatocellular transport of bile acids and xenobiotics.
    Honscha W; Platte HD; Oesch F; Friedberg T
    Biochem J; 1995 Nov; 311 ( Pt 3)(Pt 3):975-9. PubMed ID: 7487959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of bile acid transport across Na+/taurocholate cotransporting polypeptide (SLC10A1) and bile salt export pump (ABCB 11)-coexpressing LLC-PK1 cells by cholestasis-inducing drugs.
    Mita S; Suzuki H; Akita H; Hayashi H; Onuki R; Hofmann AF; Sugiyama Y
    Drug Metab Dispos; 2006 Sep; 34(9):1575-81. PubMed ID: 16760228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular properties of hepatic uptake systems for bile acids and organic anions.
    Hagenbuch B
    J Membr Biol; 1997 Nov; 160(1):1-8. PubMed ID: 9351887
    [No Abstract]   [Full Text] [Related]  

  • 7. Rat cholangiocytes absorb bile acids at their apical domain via the ileal sodium-dependent bile acid transporter.
    Lazaridis KN; Pham L; Tietz P; Marinelli RA; deGroen PC; Levine S; Dawson PA; LaRusso NF
    J Clin Invest; 1997 Dec; 100(11):2714-21. PubMed ID: 9389734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of fluvastatin with the liver-specific Na+ -dependent taurocholate cotransporting polypeptide (NTCP).
    Greupink R; Dillen L; Monshouwer M; Huisman MT; Russel FG
    Eur J Pharm Sci; 2011 Nov; 44(4):487-96. PubMed ID: 21945488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation by drugs of human hepatic sodium-dependent bile acid transporter (sodium taurocholate cotransporting polypeptide) activity.
    Kim RB; Leake B; Cvetkovic M; Roden MM; Nadeau J; Walubo A; Wilkinson GR
    J Pharmacol Exp Ther; 1999 Dec; 291(3):1204-9. PubMed ID: 10565843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular regulation of sinusoidal liver bile acid transporters during cholestasis.
    Gartung C; Matern S
    Yale J Biol Med; 1997; 70(4):355-63. PubMed ID: 9626756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of sodium taurocholate co-transporting polypeptide to the uptake of its possible substrates into rat hepatocytes.
    Kouzuki H; Suzuki H; Ito K; Ohashi R; Sugiyama Y
    J Pharmacol Exp Ther; 1998 Aug; 286(2):1043-50. PubMed ID: 9694967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological characterization of human Na⁺/taurocholate cotransporting polypeptide (hNTCP) heterologously expressed in Xenopus laevis oocytes.
    Masuda M; Ichikawa Y; Shimono K; Shimizu M; Tanaka Y; Nara T; Miyauchi S
    Arch Biochem Biophys; 2014 Nov; 562():115-21. PubMed ID: 25168282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The functional expression of sodium-dependent bile acid transport in Madin-Darby canine kidney cells transfected with the cDNA for microsomal epoxide hydrolase.
    von Dippe P; Amoui M; Stellwagen RH; Levy D
    J Biol Chem; 1996 Jul; 271(30):18176-80. PubMed ID: 8663355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Na(+) -taurocholate cotransporting polypeptide knockout mouse: A new tool for study of bile acids and hepatitis B virus biology.
    Kosters A; Dawson PA
    Hepatology; 2015 Jul; 62(1):19-21. PubMed ID: 25761948
    [No Abstract]   [Full Text] [Related]  

  • 15. Novel cationic and neutral glycocholic acid and polyamine conjugates able to inhibit transporters involved in hepatic and intestinal bile acid uptake.
    Vicens M; Medarde M; Macias RI; Larena MG; Villafaina A; Serrano MA; Marin JJ
    Bioorg Med Chem; 2007 Mar; 15(6):2359-67. PubMed ID: 17276074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The sodium bile salt cotransport family SLC10.
    Hagenbuch B; Dawson P
    Pflugers Arch; 2004 Feb; 447(5):566-70. PubMed ID: 12851823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation.
    Stieger B
    Handb Exp Pharmacol; 2011; (201):205-59. PubMed ID: 21103971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vitro Functional Characterization and in Silico Prediction of Rare Genetic Variation in the Bile Acid and Drug Transporter, Na
    Russell LE; Zhou Y; Lauschke VM; Kim RB
    Mol Pharm; 2020 Apr; 17(4):1170-1181. PubMed ID: 32101444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepatocellular organic anion-transporting polypeptides (OATPs) and multidrug resistance-associated protein 2 (MRP2) are inhibited by silibinin.
    Wlcek K; Koller F; Ferenci P; Stieger B
    Drug Metab Dispos; 2013 Aug; 41(8):1522-8. PubMed ID: 23695864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hepatic transport of bile salts.
    Kullak-Ublick GA; Stieger B; Hagenbuch B; Meier PJ
    Semin Liver Dis; 2000; 20(3):273-92. PubMed ID: 11076396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.