BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 29212919)

  • 1. Neuronal dynamics supporting formation and recombination of cross-modal olfactory-tactile association in the rat hippocampal formation.
    Boisselier L; Gervasoni D; Garcia S; Ferry B; Gervais R
    J Neurophysiol; 2018 Mar; 119(3):1140-1152. PubMed ID: 29212919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of the lateral entorhinal cortex for the formation of cross-modal olfactory-tactile associations in the rat.
    Boisselier L; Ferry B; Gervais R
    Hippocampus; 2014 Jul; 24(7):877-91. PubMed ID: 24715601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Respective role of the dorsal hippocampus and the entorhinal cortex during the recombination of previously learned olfactory-tactile associations in the rat.
    Boisselier L; Ferry B; Gervais R
    Learn Mem; 2017 Jan; 24(1):24-34. PubMed ID: 27980073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateral entorhinal modulation of piriform cortical activity and fine odor discrimination.
    Chapuis J; Cohen Y; He X; Zhang Z; Jin S; Xu F; Wilson DA
    J Neurosci; 2013 Aug; 33(33):13449-59. PubMed ID: 23946403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-Range Respiratory and Theta Oscillation Networks Depend on Spatial Sensory Context.
    Sheriff A; Pandolfi G; Nguyen VS; Kay LM
    J Neurosci; 2021 Dec; 41(48):9957-9970. PubMed ID: 34667070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Odor- and state-dependent olfactory tubercle local field potential dynamics in awake rats.
    Carlson KS; Dillione MR; Wesson DW
    J Neurophysiol; 2014 May; 111(10):2109-23. PubMed ID: 24598519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theta Phase Entrainment of Single-Cell Spiking in Rat Somatosensory Barrel Cortex and Secondary Visual Cortex Is Enhanced during Multisensory Discrimination Behavior.
    Ruikes TR; Fiorilli J; Lim J; Huis In 't Veld G; Bosman C; Pennartz CMA
    eNeuro; 2024 Apr; 11(4):. PubMed ID: 38621992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directional coupling from the olfactory bulb to the hippocampus during a go/no-go odor discrimination task.
    Gourévitch B; Kay LM; Martin C
    J Neurophysiol; 2010 May; 103(5):2633-41. PubMed ID: 20164392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Odor Identification in Rats: Behavioral and Electrophysiological Evidence of Learned Olfactory-Auditory Associations.
    Olofsson JK; Zhou G; East BS; Zelano C; Wilson DA
    eNeuro; 2019; 6(4):. PubMed ID: 31362955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coherence between Rat Sensorimotor System and Hippocampus Is Enhanced during Tactile Discrimination.
    Grion N; Akrami A; Zuo Y; Stella F; Diamond ME
    PLoS Biol; 2016 Feb; 14(2):e1002384. PubMed ID: 26890254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reward Expectancy Strengthens CA1 Theta and Beta Band Synchronization and Hippocampal-Ventral Striatal Coupling.
    Lansink CS; Meijer GT; Lankelma JV; Vinck MA; Jackson JC; Pennartz CM
    J Neurosci; 2016 Oct; 36(41):10598-10610. PubMed ID: 27733611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theta Oscillations Rapidly Convey Odor-Specific Content in Human Piriform Cortex.
    Jiang H; Schuele S; Rosenow J; Zelano C; Parvizi J; Tao JX; Wu S; Gottfried JA
    Neuron; 2017 Apr; 94(1):207-219.e4. PubMed ID: 28384472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theta oscillations and sensorimotor performance.
    Kay LM
    Proc Natl Acad Sci U S A; 2005 Mar; 102(10):3863-8. PubMed ID: 15738424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Odorant features differentially modulate beta/gamma oscillatory patterns in anterior versus posterior piriform cortex.
    Courtiol E; Buonviso N; Litaudon P
    Neuroscience; 2019 Jun; 409():26-34. PubMed ID: 31022464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel involvement of perirhinal and lateral entorhinal cortex in the polysynaptic activation of hippocampus by olfactory inputs.
    Liu P; Bilkey DK
    Hippocampus; 1997; 7(3):296-306. PubMed ID: 9228527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Odor-evoked activity in the mouse lateral entorhinal cortex.
    Xu W; Wilson DA
    Neuroscience; 2012 Oct; 223():12-20. PubMed ID: 22871522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orchestration of Hippocampal Information Encoding by the Piriform Cortex.
    Strauch C; Manahan-Vaughan D
    Cereb Cortex; 2020 Jan; 30(1):135-147. PubMed ID: 31220213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gamma and Beta Oscillations Define a Sequence of Neurocognitive Modes Present in Odor Processing.
    Frederick DE; Brown A; Brim E; Mehta N; Vujovic M; Kay LM
    J Neurosci; 2016 Jul; 36(29):7750-67. PubMed ID: 27445151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatially segregated feedforward and feedback neurons support differential odor processing in the lateral entorhinal cortex.
    Leitner FC; Melzer S; Lütcke H; Pinna R; Seeburg PH; Helmchen F; Monyer H
    Nat Neurosci; 2016 Jul; 19(7):935-44. PubMed ID: 27182817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lateral entorhinal cortex supports the development of prefrontal network activity that bridges temporally discontiguous stimuli.
    Yu XT; Yu J; Choi A; Takehara-Nishiuchi K
    Hippocampus; 2021 Dec; 31(12):1285-1299. PubMed ID: 34606152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.