BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 29212919)

  • 21. Cue-sampling and goal-approach correlates of hippocampal unit activity in rats performing an odor-discrimination task.
    Eichenbaum H; Kuperstein M; Fagan A; Nagode J
    J Neurosci; 1987 Mar; 7(3):716-32. PubMed ID: 3559709
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Position and behavioral modulation of synchronization of hippocampal and accumbens neuronal discharges in freely moving rats.
    Tabuchi ET; Mulder AB; Wiener SI
    Hippocampus; 2000; 10(6):717-28. PubMed ID: 11153717
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Olfactory inputs activate the medial entorhinal cortex via the hippocampus.
    Biella G; de Curtis M
    J Neurophysiol; 2000 Apr; 83(4):1924-31. PubMed ID: 10758103
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Olfactory-driven beta band entrainment of limbic circuitry during neonatal development.
    Kostka JK; Hanganu-Opatz IL
    J Physiol; 2023 Aug; 601(16):3605-3630. PubMed ID: 37434507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The functional upregulation of piriform cortex is associated with cross-modal plasticity in loss of whisker tactile inputs.
    Ye B; Huang L; Gao Z; Chen P; Ni H; Guan S; Zhu Y; Wang JH
    PLoS One; 2012; 7(8):e41986. PubMed ID: 22927919
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The neural basis of nonvisual object recognition memory in the rat.
    Albasser MM; Olarte-Sánchez CM; Amin E; Horne MR; Newton MJ; Warburton EC; Aggleton JP
    Behav Neurosci; 2013 Feb; 127(1):70-85. PubMed ID: 23244291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hippocampal CA1 spiking during encoding and retrieval: relation to theta phase.
    Manns JR; Zilli EA; Ong KC; Hasselmo ME; Eichenbaum H
    Neurobiol Learn Mem; 2007 Jan; 87(1):9-20. PubMed ID: 16839788
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cholinergic suppression of excitatory synaptic responses in layer II of the medial entorhinal cortex.
    Hamam BN; Sinai M; Poirier G; Chapman CA
    Hippocampus; 2007; 17(2):103-13. PubMed ID: 17146776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Beta-frequency (15-35 Hz) electroencephalogram activities elicited by toluene and electrical stimulation in the behaving rat.
    Chapman CA; Xu Y; Haykin S; Racine RJ
    Neuroscience; 1998 Oct; 86(4):1307-19. PubMed ID: 9697135
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visual deprivation induce cross-modal enhancement of olfactory perception.
    Zhou Y; Fang FH; Pan P; Liu ZR; Ji YH
    Biochem Biophys Res Commun; 2017 May; 486(3):833-838. PubMed ID: 28359762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Olfactory learning modifies the expression of odour-induced oscillatory responses in the gamma (60-90 Hz) and beta (15-40 Hz) bands in the rat olfactory bulb.
    Ravel N; Chabaud P; Martin C; Gaveau V; Hugues E; Tallon-Baudry C; Bertrand O; Gervais R
    Eur J Neurosci; 2003 Jan; 17(2):350-8. PubMed ID: 12542672
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polysynaptic potentiation at different levels of rat olfactory pathways following learning.
    Mouly AM; Gervais R
    Learn Mem; 2002; 9(2):66-75. PubMed ID: 11992017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Basal forebrain dynamics during nonassociative and associative olfactory learning.
    Devore S; Pender-Morris N; Dean O; Smith D; Linster C
    J Neurophysiol; 2016 Jan; 115(1):423-33. PubMed ID: 26561601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An olfacto-hippocampal network is dynamically involved in odor-discrimination learning.
    Martin C; Beshel J; Kay LM
    J Neurophysiol; 2007 Oct; 98(4):2196-205. PubMed ID: 17699692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Olfactory-auditory sensory integration in the lateral entorhinal cortex.
    Wu T; Li S; Du D; Li R; Liu P; Yin Z; Zhang H; Qiao Y; Li A
    Prog Neurobiol; 2023 Feb; 221():102399. PubMed ID: 36581184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Learning-induced modulation of oscillatory activities in the mammalian olfactory system: the role of the centrifugal fibres.
    Martin C; Gervais R; Chabaud P; Messaoudi B; Ravel N
    J Physiol Paris; 2004; 98(4-6):467-78. PubMed ID: 16274975
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatio-temporal dynamics of theta oscillations in hippocampal-entorhinal slices.
    Cappaert NL; Lopes da Silva FH; Wadman WJ
    Hippocampus; 2009 Nov; 19(11):1065-77. PubMed ID: 19338021
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reafference and attractors in the olfactory system during odor recognition.
    Kay LM; Lancaster LR; Freeman WJ
    Int J Neural Syst; 1996 Sep; 7(4):489-95. PubMed ID: 8968840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facilitation of olfactory recognition by lateral entorhinal cortex lesion in rats.
    Wirth S; Ferry B; Di Scala G
    Behav Brain Res; 1998 Mar; 91(1-2):49-59. PubMed ID: 9578439
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid Learning of Odor-Value Association in the Olfactory Striatum.
    Millman DJ; Murthy VN
    J Neurosci; 2020 May; 40(22):4335-4347. PubMed ID: 32321744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.