These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 29212925)

  • 21. Effects of gravity and kinematic constraints on muscle synergies in arm cycling.
    Botzheim L; Laczko J; Torricelli D; Mravcsik M; Pons JL; Oliveira Barroso F
    J Neurophysiol; 2021 Apr; 125(4):1367-1381. PubMed ID: 33534650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Initial information prior to movement onset influences kinematics of upward arm pointing movements.
    Rousseau C; Papaxanthis C; Gaveau J; Pozzo T; White O
    J Neurophysiol; 2016 Oct; 116(4):1673-1683. PubMed ID: 27486106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Goal-directed reaching: the allocentric coding of target location renders an offline mode of control.
    Manzone J; Heath M
    Exp Brain Res; 2018 Apr; 236(4):1149-1159. PubMed ID: 29453490
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural correlates for task-relevant facilitation of visual inputs during visually-guided hand movements.
    Lebar N; Bernier PM; Guillaume A; Mouchnino L; Blouin J
    Neuroimage; 2015 Nov; 121():39-50. PubMed ID: 26191651
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visuomotor coordination and motor representation by human temporal lobe neurons.
    Tankus A; Fried I
    J Cogn Neurosci; 2012 Mar; 24(3):600-10. PubMed ID: 22066588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Time course of 'set'-related changes in muscle responses to stance perturbation in humans.
    Schieppati M; Nardone A
    J Physiol; 1995 Sep; 487 ( Pt 3)(Pt 3):787-96. PubMed ID: 8544139
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Initiation of rapid reach-and-grasp balance reactions: is a pre-formed visuospatial map used in controlling the initial arm trajectory?
    Ghafouri M; McIlroy WE; Maki BE
    Exp Brain Res; 2004 Apr; 155(4):532-6. PubMed ID: 14985902
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of visual perturbations on the neural control of limb stiffness.
    Wong J; Wilson ET; Malfait N; Gribble PL
    J Neurophysiol; 2009 Jan; 101(1):246-57. PubMed ID: 18667545
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reach endpoint formation during the visuomotor planning of free arm pointing.
    Berret B; Bisio A; Jacono M; Pozzo T
    Eur J Neurosci; 2014 Nov; 40(10):3491-503. PubMed ID: 25209101
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visual inference of arm movement is constrained by motor representations.
    Saunier G; Paillard AC; Vargas CD; Pozzo T
    Behav Brain Res; 2015 Sep; 290():197-200. PubMed ID: 25975175
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preferential representation of instructed target location versus limb trajectory in dorsal premotor area.
    Shen L; Alexander GE
    J Neurophysiol; 1997 Mar; 77(3):1195-212. PubMed ID: 9084590
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time course of changes in the long-latency feedback response parallels the fast process of short-term motor adaptation.
    Coltman SK; Gribble PL
    J Neurophysiol; 2020 Aug; 124(2):388-399. PubMed ID: 32639925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insights into the control of arm movement during body motion as revealed by EMG analyses.
    Blouin J; Guillaud E; Bresciani JP; Guerraz M; Simoneau M
    Brain Res; 2010 Jan; 1309():40-52. PubMed ID: 19883633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of roll visual motion on online control of arm movement: reaching within a dynamic virtual environment.
    Dvorkin AY; Kenyon RV; Keshner EA
    Exp Brain Res; 2009 Feb; 193(1):95-107. PubMed ID: 18936925
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Symbolic cues enhance express visuomotor responses in human arm muscles at the motor planning rather than the visuospatial processing stage.
    Contemori S; Loeb GE; Corneil BD; Wallis G; Carroll TJ
    J Neurophysiol; 2022 Sep; 128(3):494-510. PubMed ID: 35858112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural gain induced by startling acoustic stimuli is additive to preparatory activation.
    McInnes AN; Corti EJ; Tresilian JR; Lipp OV; Marinovic W
    Psychophysiology; 2020 Mar; 57(3):e13493. PubMed ID: 31595983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction of visual and proprioceptive feedback during adaptation of human reaching movements.
    Scheidt RA; Conditt MA; Secco EL; Mussa-Ivaldi FA
    J Neurophysiol; 2005 Jun; 93(6):3200-13. PubMed ID: 15659526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of leg muscle tendon vibration on group Ia and group II reflex responses to stance perturbation in humans.
    Bove M; Nardone A; Schieppati M
    J Physiol; 2003 Jul; 550(Pt 2):617-30. PubMed ID: 12777449
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Medium-latency stretch reflexes of foot and leg muscles analysed by cooling the lower limb in standing humans.
    Schieppati M; Nardone A
    J Physiol; 1997 Sep; 503 ( Pt 3)(Pt 3):691-8. PubMed ID: 9379421
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes to online control and eye-hand coordination with healthy ageing.
    O'Rielly JL; Ma-Wyatt A
    Hum Mov Sci; 2018 Jun; 59():244-257. PubMed ID: 29747069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.