BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 29213073)

  • 1. Reversible silencing of lumbar spinal interneurons unmasks a task-specific network for securing hindlimb alternation.
    Pocratsky AM; Burke DA; Morehouse JR; Beare JE; Riegler AS; Tsoulfas P; States GJR; Whittemore SR; Magnuson DSK
    Nat Commun; 2017 Dec; 8(1):1963. PubMed ID: 29213073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rostral lumbar segments are the key controllers of hindlimb locomotor rhythmicity in the adult spinal rat.
    Gerasimenko Y; Preston C; Zhong H; Roy RR; Edgerton VR; Shah PK
    J Neurophysiol; 2019 Aug; 122(2):585-600. PubMed ID: 30943092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forelimb EMG-based trigger to control an electronic spinal bridge to enable hindlimb stepping after a complete spinal cord lesion in rats.
    Gad P; Woodbridge J; Lavrov I; Zhong H; Roy RR; Sarrafzadeh M; Edgerton VR
    J Neuroeng Rehabil; 2012 Jun; 9():38. PubMed ID: 22691460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-cell and ensemble activity of lumbar intermediate and ventral horn interneurons in the spinal air-stepping cat.
    McMahon C; Kowalski DP; Krupka AJ; Lemay MA
    J Neurophysiol; 2022 Jan; 127(1):99-115. PubMed ID: 34851739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interlimb Coordination during Tied-Belt and Transverse Split-Belt Locomotion before and after an Incomplete Spinal Cord Injury.
    Thibaudier Y; Hurteau MF; Dambreville C; Chraibi A; Goetz L; Frigon A
    J Neurotrauma; 2017 May; 34(9):1751-1765. PubMed ID: 27219842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retrogradely Transportable Lentivirus Tracers for Mapping Spinal Cord Locomotor Circuits.
    Sheikh IS; Keefe KM; Sterling NA; Junker IP; Eneanya CI; Liu Y; Tang XQ; Smith GM
    Front Neural Circuits; 2018; 12():60. PubMed ID: 30090059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Spinal Mechanism Related to Left-Right Symmetry Reduces Cutaneous Reflex Modulation Independently of Speed During Split-Belt Locomotion.
    Hurteau MF; Frigon A
    J Neurosci; 2018 Nov; 38(48):10314-10328. PubMed ID: 30315129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graded Arrays of Spinal and Supraspinal V2a Interneuron Subtypes Underlie Forelimb and Hindlimb Motor Control.
    Hayashi M; Hinckley CA; Driscoll SP; Moore NJ; Levine AJ; Hilde KL; Sharma K; Pfaff SL
    Neuron; 2018 Feb; 97(4):869-884.e5. PubMed ID: 29398364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion extension oscillators.
    Juvin L; Simmers J; Morin D
    J Physiol; 2007 Aug; 583(Pt 1):115-28. PubMed ID: 17569737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of the spinal network associated with generation of hindlimb locomotion in the neonatal rat and organization of its transverse coupling system.
    Kremer E; Lev-Tov A
    J Neurophysiol; 1997 Mar; 77(3):1155-70. PubMed ID: 9084588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in vitro spinal cord-hindlimb preparation for studying behaviorally relevant rat locomotor function.
    Hayes HB; Chang YH; Hochman S
    J Neurophysiol; 2009 Feb; 101(2):1114-22. PubMed ID: 19073815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The spinal control of locomotion and step-to-step variability in left-right symmetry from slow to moderate speeds.
    Dambreville C; Labarre A; Thibaudier Y; Hurteau MF; Frigon A
    J Neurophysiol; 2015 Aug; 114(2):1119-28. PubMed ID: 26084910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of flexor-extensor interactions in the mammalian spinal cord: insights from computational modelling.
    Shevtsova NA; Rybak IA
    J Physiol; 2016 Nov; 594(21):6117-6131. PubMed ID: 27292055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of H- and M-waves recorded from rat forelimbs.
    Hosoido T; Motoyama S; Goto M; Mori F; Tajima T; Hirata H; Wada N
    Neurosci Lett; 2009 Feb; 450(3):239-41. PubMed ID: 19056465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats.
    de Leon RD; Hodgson JA; Roy RR; Edgerton VR
    J Neurophysiol; 1998 Mar; 79(3):1329-40. PubMed ID: 9497414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hindlimb locomotor and postural training modulates glycinergic inhibition in the spinal cord of the adult spinal cat.
    de Leon RD; Tamaki H; Hodgson JA; Roy RR; Edgerton VR
    J Neurophysiol; 1999 Jul; 82(1):359-69. PubMed ID: 10400964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silencing long-descending inter-enlargement propriospinal neurons improves hindlimb stepping after contusive spinal cord injuries.
    Shepard CT; Brown BL; Van Rijswijck MA; Zalla RM; Burke DA; Morehouse JR; Riegler AS; Whittemore SR; Magnuson DSK
    Elife; 2023 Dec; 12():. PubMed ID: 38099572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silencing long ascending propriospinal neurons after spinal cord injury improves hindlimb stepping in the adult rat.
    Shepard CT; Pocratsky AM; Brown BL; Van Rijswijck MA; Zalla RM; Burke DA; Morehouse JR; Riegler AS; Whittemore SR; Magnuson DS
    Elife; 2021 Dec; 10():. PubMed ID: 34854375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin and circuitry of spinal locomotor interneurons generating different speeds.
    Boije H; Kullander K
    Curr Opin Neurobiol; 2018 Dec; 53():16-21. PubMed ID: 29733915
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Haque F; Rancic V; Zhang W; Clugston R; Ballanyi K; Gosgnach S
    J Neurosci; 2018 Jun; 38(25):5666-5676. PubMed ID: 29789381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.