BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

857 related articles for article (PubMed ID: 29213270)

  • 1. Nanobodies and Nanobody-Based Human Heavy Chain Antibodies As Antitumor Therapeutics.
    Bannas P; Hambach J; Koch-Nolte F
    Front Immunol; 2017; 8():1603. PubMed ID: 29213270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CD38-Specific Biparatopic Heavy Chain Antibodies Display Potent Complement-Dependent Cytotoxicity Against Multiple Myeloma Cells.
    Schütze K; Petry K; Hambach J; Schuster N; Fumey W; Schriewer L; Röckendorf J; Menzel S; Albrecht B; Haag F; Stortelers C; Bannas P; Koch-Nolte F
    Front Immunol; 2018; 9():2553. PubMed ID: 30524421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Antibody and Nanobody Tools for P2X7.
    Stähler T; Danquah W; Demeules M; Gondé H; Hardet R; Haag F; Adriouch S; Koch-Nolte F; Menzel S
    Methods Mol Biol; 2022; 2510():99-127. PubMed ID: 35776322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanobodies as efficient drug-carriers: Progress and trends in chemotherapy.
    Panikar SS; Banu N; Haramati J; Del Toro-Arreola S; Riera Leal A; Salas P
    J Control Release; 2021 Jun; 334():389-412. PubMed ID: 33964364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perspectives for the Development of CD38-Specific Heavy Chain Antibodies as Therapeutics for Multiple Myeloma.
    Bannas P; Koch-Nolte F
    Front Immunol; 2018; 9():2559. PubMed ID: 30459772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully synthetic platform to rapidly generate tetravalent bispecific nanobody-based immunoglobulins.
    Misson Mindrebo L; Liu H; Ozorowski G; Tran Q; Woehl J; Khalek I; Smith JM; Barman S; Zhao F; Keating C; Limbo O; Verma M; Liu J; Stanfield RL; Zhu X; Turner HL; Sok D; Huang PS; Burton DR; Ward AB; Wilson IA; Jardine JG
    Proc Natl Acad Sci U S A; 2023 Jun; 120(24):e2216612120. PubMed ID: 37276407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-expression of monoclonal nanobodies used in the preparation of HRP-conjugated second antibody.
    Ahmadvand D; Rahbarizadeh F; Vishteh VK
    Hybridoma (Larchmt); 2008 Aug; 27(4):269-76. PubMed ID: 18707545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanobodies: The Future of Antibody-Based Immune Therapeutics.
    Bathula NV; Bommadevara H; Hayes JM
    Cancer Biother Radiopharm; 2021 Mar; 36(2):109-122. PubMed ID: 32936001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A tetravalent bispecific TandAb (CD19/CD3), AFM11, efficiently recruits T cells for the potent lysis of CD19(+) tumor cells.
    Reusch U; Duell J; Ellwanger K; Herbrecht C; Knackmuss SH; Fucek I; Eser M; McAleese F; Molkenthin V; Gall FL; Topp M; Little M; Zhukovsky EA
    MAbs; 2015; 7(3):584-604. PubMed ID: 25875246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Introduction to heavy chain antibodies and derived Nanobodies.
    Vincke C; Muyldermans S
    Methods Mol Biol; 2012; 911():15-26. PubMed ID: 22886243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo near-infrared fluorescence targeting of T cells: comparison of nanobodies and conventional monoclonal antibodies.
    Bannas P; Well L; Lenz A; Rissiek B; Haag F; Schmid J; Hochgräfe K; Trepel M; Adam G; Ittrich H; Koch-Nolte F
    Contrast Media Mol Imaging; 2014; 9(2):135-42. PubMed ID: 24523058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of nanobodies in plant science and biotechnology.
    Wang W; Yuan J; Jiang C
    Plant Mol Biol; 2021 Jan; 105(1-2):43-53. PubMed ID: 33037986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Single-domain antibody - advances in research and application].
    Kang X; Cao J; Zhang B; Yuan Q
    Sheng Wu Gong Cheng Xue Bao; 2018 Dec; 34(12):1974-1984. PubMed ID: 30584708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application Progress of the Single Domain Antibody in Medicine.
    Tang H; Gao Y; Han J
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rearranging the domain order of a diabody-based IgG-like bispecific antibody enhances its antitumor activity and improves its degradation resistance and pharmacokinetics.
    Asano R; Shimomura I; Konno S; Ito A; Masakari Y; Orimo R; Taki S; Arai K; Ogata H; Okada M; Furumoto S; Onitsuka M; Omasa T; Hayashi H; Katayose Y; Unno M; Kudo T; Umetsu M; Kumagai I
    MAbs; 2014; 6(5):1243-54. PubMed ID: 25517309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanobody-based CD38-specific heavy chain antibodies induce killing of multiple myeloma and other hematological malignancies.
    Schriewer L; Schütze K; Petry K; Hambach J; Fumey W; Koenigsdorf J; Baum N; Menzel S; Rissiek B; Riecken K; Fehse B; Röckendorf JL; Schmid J; Albrecht B; Pinnschmidt H; Ayuk F; Kröger N; Binder M; Schuch G; Hansen T; Haag F; Adam G; Koch-Nolte F; Bannas P
    Theranostics; 2020; 10(6):2645-2658. PubMed ID: 32194826
    [No Abstract]   [Full Text] [Related]  

  • 17. NANOBODIES®: A Review of Diagnostic and Therapeutic Applications.
    Jin BK; Odongo S; Radwanska M; Magez S
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36983063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions.
    Nichols P; Li L; Kumar S; Buck PM; Singh SK; Goswami S; Balthazor B; Conley TR; Sek D; Allen MJ
    MAbs; 2015; 7(1):212-30. PubMed ID: 25559441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting tumors with nanobodies for cancer imaging and therapy.
    Oliveira S; Heukers R; Sornkom J; Kok RJ; van Bergen En Henegouwen PM
    J Control Release; 2013 Dec; 172(3):607-17. PubMed ID: 24035975
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 43.