These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 29213342)
1. Unique molecular mechanisms for maintenance and alteration of genetic information in the budding yeast Ito-Harashima S; Yagi T Genes Environ; 2017; 39():28. PubMed ID: 29213342 [TBL] [Abstract][Full Text] [Related]
2. Modulation of efficiency of translation termination in Saccharomyces cerevisiae. Nizhnikov AA; Antonets KS; Inge-Vechtomov SG; Derkatch IL Prion; 2014; 8(3):247-60. PubMed ID: 25486049 [TBL] [Abstract][Full Text] [Related]
3. The tRNA-Tyr gene family of Saccharomyces cerevisiae: agents of phenotypic variation and position effects on mutation frequency. Ito-Harashima S; Hartzog PE; Sinha H; McCusker JH Genetics; 2002 Aug; 161(4):1395-410. PubMed ID: 12196388 [TBL] [Abstract][Full Text] [Related]
4. DSB repair: the yeast paradigm. Aylon Y; Kupiec M DNA Repair (Amst); 2004; 3(8-9):797-815. PubMed ID: 15279765 [TBL] [Abstract][Full Text] [Related]
6. Relative contribution of homologous recombination and non-homologous end-joining to DNA double-strand break repair after oxidative stress in Saccharomyces cerevisiae. Letavayová L; Marková E; Hermanská K; Vlcková V; Vlasáková D; Chovanec M; Brozmanová J DNA Repair (Amst); 2006 May; 5(5):602-10. PubMed ID: 16515894 [TBL] [Abstract][Full Text] [Related]
7. Investigations on the role of base excision repair and non-homologous end-joining pathways in sodium selenite-induced toxicity and mutagenicity in Saccharomyces cerevisiae. Mániková D; Vlasáková D; Loduhová J; Letavayová L; Vigasová D; Krascsenitsová E; Vlcková V; Brozmanová J; Chovanec M Mutagenesis; 2010 Mar; 25(2):155-62. PubMed ID: 19955329 [TBL] [Abstract][Full Text] [Related]
8. Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. Sonoda E; Hochegger H; Saberi A; Taniguchi Y; Takeda S DNA Repair (Amst); 2006 Sep; 5(9-10):1021-9. PubMed ID: 16807135 [TBL] [Abstract][Full Text] [Related]
9. Consider the workhorse: Nonhomologous end-joining in budding yeast. Emerson CH; Bertuch AA Biochem Cell Biol; 2016 Oct; 94(5):396-406. PubMed ID: 27240172 [TBL] [Abstract][Full Text] [Related]
10. Quantitation of readthrough of termination codons in yeast using a novel gene fusion assay. Firoozan M; Grant CM; Duarte JA; Tuite MF Yeast; 1991 Feb; 7(2):173-83. PubMed ID: 1905859 [TBL] [Abstract][Full Text] [Related]
11. Yap1 and Skn7 genetically interact with Rad51 in response to oxidative stress and DNA double-strand break in Saccharomyces cerevisiae. Yi DG; Kim MJ; Choi JE; Lee J; Jung J; Huh WK; Chung WH Free Radic Biol Med; 2016 Dec; 101():424-433. PubMed ID: 27838435 [TBL] [Abstract][Full Text] [Related]
12. Genetic instability in budding and fission yeast-sources and mechanisms. Skoneczna A; Kaniak A; Skoneczny M FEMS Microbiol Rev; 2015 Nov; 39(6):917-67. PubMed ID: 26109598 [TBL] [Abstract][Full Text] [Related]
13. DNA double-strand break repair in Penaeus monodon is predominantly dependent on homologous recombination. Srivastava S; Dahal S; Naidu SJ; Anand D; Gopalakrishnan V; Kooloth Valappil R; Raghavan SC DNA Res; 2017 Apr; 24(2):117-128. PubMed ID: 28431013 [TBL] [Abstract][Full Text] [Related]
14. [Molecular-genetic analysis of dual-stranded DNA break repair in saccharomyces yeasts]. Glazer VM; Glazunov AV Genetika; 1999 Nov; 35(11):1449-69. PubMed ID: 10624571 [TBL] [Abstract][Full Text] [Related]
15. Mechanisms of DNA double strand break repair and chromosome aberration formation. Iliakis G; Wang H; Perrault AR; Boecker W; Rosidi B; Windhofer F; Wu W; Guan J; Terzoudi G; Pantelias G Cytogenet Genome Res; 2004; 104(1-4):14-20. PubMed ID: 15162010 [TBL] [Abstract][Full Text] [Related]
16. Capture of linear fragments at a double-strand break in yeast. Haviv-Chesner A; Kobayashi Y; Gabriel A; Kupiec M Nucleic Acids Res; 2007; 35(15):5192-202. PubMed ID: 17670800 [TBL] [Abstract][Full Text] [Related]
17. Nonsense suppressors of yeast cause osmotic-sensitive growth. Singh A Proc Natl Acad Sci U S A; 1977 Jan; 74(1):305-9. PubMed ID: 319459 [TBL] [Abstract][Full Text] [Related]
18. [Suppression of nonsense and frameshift mutations obtained by different methods for inactivating the translation termination factor eRF3 in yeast Saccharomyces cerevisiae]. Zadorskiĭ SP; Borkhsenius AS; Sopova IuV; Startsev VA; Inge-Vechtomov SG Genetika; 2003 Apr; 39(4):489-94. PubMed ID: 12760248 [TBL] [Abstract][Full Text] [Related]
19. Lack of superoxide dismutase in a rad51 mutant exacerbates genomic instability and oxidative stress-mediated cytotoxicity in Saccharomyces cerevisiae. Choi JE; Heo SH; Kim MJ; Chung WH Free Radic Biol Med; 2018 Dec; 129():97-106. PubMed ID: 30223018 [TBL] [Abstract][Full Text] [Related]
20. Regulation of DNA double-strand break repair pathway choice. Shrivastav M; De Haro LP; Nickoloff JA Cell Res; 2008 Jan; 18(1):134-47. PubMed ID: 18157161 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]