BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

693 related articles for article (PubMed ID: 29214017)

  • 1. Morphological bactericidal fast-acting effects of peracetic acid, a high-level disinfectant, against
    Chino T; Nukui Y; Morishita Y; Moriya K
    Antimicrob Resist Infect Control; 2017; 6():122. PubMed ID: 29214017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tolerance of Pseudomonas aeruginosa in in-vitro biofilms to high-level peracetic acid disinfection.
    Akinbobola AB; Sherry L; Mckay WG; Ramage G; Williams C
    J Hosp Infect; 2017 Oct; 97(2):162-168. PubMed ID: 28648453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen peroxide and sodium hypochlorite disinfectants are more effective against
    Lineback CB; Nkemngong CA; Wu ST; Li X; Teska PJ; Oliver HF
    Antimicrob Resist Infect Control; 2018; 7():154. PubMed ID: 30568790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-Use Evaluation of Peracetic Acid for High-Level Disinfection of Endoscopes.
    Chenjiao W; Hongyan Z; Qing G; Xiaoqi Z; Liying G; Ying F
    Gastroenterol Nurs; 2016; 39(2):116-20. PubMed ID: 27070796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory effect of biocides on the viable masses and matrices of Staphylococcus aureus and Pseudomonas aeruginosa biofilms.
    Toté K; Horemans T; Vanden Berghe D; Maes L; Cos P
    Appl Environ Microbiol; 2010 May; 76(10):3135-42. PubMed ID: 20363795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of peracetic acid on biofilms formed by Staphylococcus aureus and Listeria monocytogenes isolated from dairy plants.
    Lee SHI; Cappato LP; Corassin CH; Cruz AG; Oliveira CAF
    J Dairy Sci; 2016 Mar; 99(3):2384-2390. PubMed ID: 26723125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mimicking disinfection and drying of biofilms in contaminated endoscopes.
    Kovaleva J; Degener JE; van der Mei HC
    J Hosp Infect; 2010 Dec; 76(4):345-50. PubMed ID: 20951470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of growth temperature and surface type on the resistance of Pseudomonas aeruginosa and Staphylococcus aureus biofilms to disinfectants.
    Abdallah M; Khelissa O; Ibrahim A; Benoliel C; Heliot L; Dhulster P; Chihib NE
    Int J Food Microbiol; 2015 Dec; 214():38-47. PubMed ID: 26233298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of disinfectant formulation and organic soil on the efficacy of oxidizing disinfectants against biofilms.
    Chowdhury D; Rahman A; Hu H; Jensen SO; Deva AK; Vickery K
    J Hosp Infect; 2019 Sep; 103(1):e33-e41. PubMed ID: 30391488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ortho-phthalaldehyde: a possible alternative to glutaraldehyde for high level disinfection.
    Walsh SE; Maillard JY; Russell AD
    J Appl Microbiol; 1999 Jun; 86(6):1039-46. PubMed ID: 10389251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pseudomonas aeruginosa Increases the Sensitivity of Biofilm-Grown Staphylococcus aureus to Membrane-Targeting Antiseptics and Antibiotics.
    Orazi G; Ruoff KL; O'Toole GA
    mBio; 2019 Jul; 10(4):. PubMed ID: 31363032
    [No Abstract]   [Full Text] [Related]  

  • 12. Control of Staphylococcus aureus biofilms by the application of single and combined treatments based in plant essential oils.
    Vázquez-Sánchez D; Galvão JA; Mazine MR; Gloria EM; Oetterer M
    Int J Food Microbiol; 2018 Dec; 286():128-138. PubMed ID: 30099281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of regrowth of planktonic and biofilm bacteria after peracetic acid disinfection.
    Zhang C; Brown PJB; Miles RJ; White TA; Grant DG; Stalla D; Hu Z
    Water Res; 2019 Feb; 149():640-649. PubMed ID: 30594003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Malachite green-conjugated multi-walled carbon nanotubes potentiate antimicrobial photodynamic inactivation of planktonic cells and biofilms of
    Anju VT; Paramanantham P; Siddhardha B; Sruthil Lal SB; Sharan A; Alyousef AA; Arshad M; Syed A
    Int J Nanomedicine; 2019; 14():3861-3874. PubMed ID: 31213806
    [No Abstract]   [Full Text] [Related]  

  • 15. Activity of disinfectants against multispecies biofilms formed by Staphylococcus aureus, Candida albicans and Pseudomonas aeruginosa.
    Kart D; Tavernier S; Van Acker H; Nelis HJ; Coenye T
    Biofouling; 2014; 30(3):377-83. PubMed ID: 24579656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative biocidal activity of peracetic acid, benzalkonium chloride and ortho-phthalaldehyde on 77 bacterial strains.
    Bridier A; Briandet R; Thomas V; Dubois-Brissonnet F
    J Hosp Infect; 2011 Jul; 78(3):208-13. PubMed ID: 21664534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 'Secondary biofilms' could cause failure of peracetic acid high-level disinfection of endoscopes.
    Akinbobola AB; Amaeze NJ; Mackay WG; Ramage G; Williams C
    J Hosp Infect; 2021 Jan; 107():67-75. PubMed ID: 33098959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory efficacy of various antibiotics on matrix and viable mass of Staphylococcus aureus and Pseudomonas aeruginosa biofilms.
    Toté K; Berghe DV; Deschacht M; de Wit K; Maes L; Cos P
    Int J Antimicrob Agents; 2009 Jun; 33(6):525-31. PubMed ID: 19179053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofilm formation by Staphylococcus aureus and Salmonella spp. under mono and dual-species conditions and their sensitivity to cetrimonium bromide, peracetic acid and sodium hypochlorite.
    Iñiguez-Moreno M; Gutiérrez-Lomelí M; Guerrero-Medina PJ; Avila-Novoa MG
    Braz J Microbiol; 2018; 49(2):310-319. PubMed ID: 29100930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution and Inhibition of Liposomes on Staphylococcus aureus and Pseudomonas aeruginosa Biofilm.
    Dong D; Thomas N; Thierry B; Vreugde S; Prestidge CA; Wormald PJ
    PLoS One; 2015; 10(6):e0131806. PubMed ID: 26125555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.