These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 29214390)
1. Changes in motor performance and mental workload during practice of reaching movements: a team dynamics perspective. Shuggi IM; Shewokis PA; Herrmann JW; Gentili RJ Exp Brain Res; 2018 Feb; 236(2):433-451. PubMed ID: 29214390 [TBL] [Abstract][Full Text] [Related]
2. Motor Performance, Mental Workload and Self-Efficacy Dynamics during Learning of Reaching Movements throughout Multiple Practice Sessions. Shuggi IM; Oh H; Wu H; Ayoub MJ; Moreno A; Shaw EP; Shewokis PA; Gentili RJ Neuroscience; 2019 Dec; 423():232-248. PubMed ID: 31325564 [TBL] [Abstract][Full Text] [Related]
3. Mental workload and motor performance dynamics during practice of reaching movements under various levels of task difficulty. Shuggi IM; Oh H; Shewokis PA; Gentili RJ Neuroscience; 2017 Sep; 360():166-179. PubMed ID: 28757242 [TBL] [Abstract][Full Text] [Related]
4. Changes in Mental Workload and Motor Performance Throughout Multiple Practice Sessions Under Various Levels of Task Difficulty. Jaquess KJ; Lo LC; Oh H; Lu C; Ginsberg A; Tan YY; Lohse KR; Miller MW; Hatfield BD; Gentili RJ Neuroscience; 2018 Nov; 393():305-318. PubMed ID: 30266685 [TBL] [Abstract][Full Text] [Related]
5. Eye-Tracking in Physical Human-Robot Interaction: Mental Workload and Performance Prediction. Upasani S; Srinivasan D; Zhu Q; Du J; Leonessa A Hum Factors; 2024 Aug; 66(8):2104-2119. PubMed ID: 37793896 [TBL] [Abstract][Full Text] [Related]
6. Understanding Cognitive Performance During Robot-Assisted Surgery. Guru KA; Shafiei SB; Khan A; Hussein AA; Sharif M; Esfahani ET Urology; 2015 Oct; 86(4):751-7. PubMed ID: 26255037 [TBL] [Abstract][Full Text] [Related]
7. Robotic gaming prototype for upper limb exercise: Effects of age and embodiment on user preferences and movement. Eizicovits D; Edan Y; Tabak I; Levy-Tzedek S Restor Neurol Neurosci; 2018; 36(2):261-274. PubMed ID: 29526862 [TBL] [Abstract][Full Text] [Related]
9. MOTOR IMAGERY, PHYSICAL PRACTICE, AND MEMORY: THE EFFECTS ON PERFORMANCE AND WORKLOAD. Raisbeck LD; Diekfuss JA; Wyatt W; Shea JB Percept Mot Skills; 2015 Dec; 121(3):691-705. PubMed ID: 26595199 [TBL] [Abstract][Full Text] [Related]
10. Planning-related motor processes underlie mental practice and imitation learning. Bach P; Allami BK; Tucker M; Ellis R J Exp Psychol Gen; 2014 Jun; 143(3):1277-94. PubMed ID: 24548280 [TBL] [Abstract][Full Text] [Related]
11. Improvement and generalization of arm motor performance through motor imagery practice. Gentili R; Papaxanthis C; Pozzo T Neuroscience; 2006 Feb; 137(3):761-72. PubMed ID: 16338093 [TBL] [Abstract][Full Text] [Related]
12. Reaching kinematics to measure motor changes after mental practice in stroke. Hewett TE; Ford KR; Levine P; Page SJ Top Stroke Rehabil; 2007; 14(4):23-9. PubMed ID: 17698455 [TBL] [Abstract][Full Text] [Related]
13. Laparoscopic Motor Learning and Workspace Exploration. White AD; Mushtaq F; Giles O; Wood ML; Mole C; Culmer PR; Wilkie RM; Mon-Williams M; Lodge JPA J Surg Educ; 2016; 73(6):992-998. PubMed ID: 27321983 [TBL] [Abstract][Full Text] [Related]
14. Mental engagement during cognitive and psychomotor tasks: Effects of task type, processing demands, and practice. Pendleton DM; Sakalik ML; Moore ML; Tomporowski PD Int J Psychophysiol; 2016 Nov; 109():124-131. PubMed ID: 27585951 [TBL] [Abstract][Full Text] [Related]
15. Effects of imagery training on cognitive performance and use of physiological measures as an assessment tool of mental effort. Papadelis C; Kourtidou-Papadeli C; Bamidis P; Albani M Brain Cogn; 2007 Jun; 64(1):74-85. PubMed ID: 17335950 [TBL] [Abstract][Full Text] [Related]
16. Learning and generalization in an isometric visuomotor task. Rotella MF; Nisky I; Koehler M; Rinderknecht MD; Bastian AJ; Okamura AM J Neurophysiol; 2015 Mar; 113(6):1873-84. PubMed ID: 25520430 [TBL] [Abstract][Full Text] [Related]
17. Subtle visuomotor deficits and reduced benefit from practice in early treated phenylketonuria. Caprile C; Campistol J; Puigcerver L; Gutiérrez-Mata AP; Alonso-Colmenero I; Colomé R; Navarra J J Clin Exp Neuropsychol; 2017 Dec; 39(10):931-940. PubMed ID: 28165881 [TBL] [Abstract][Full Text] [Related]
18. Clinical usefulness and validity of robotic measures of reaching movement in hemiparetic stroke patients. Otaka E; Otaka Y; Kasuga S; Nishimoto A; Yamazaki K; Kawakami M; Ushiba J; Liu M J Neuroeng Rehabil; 2015 Aug; 12():66. PubMed ID: 26265327 [TBL] [Abstract][Full Text] [Related]
19. The development of rapid online control in children aged 6-12 years: reaching performance. Wilson PH; Hyde C Hum Mov Sci; 2013 Oct; 32(5):1138-50. PubMed ID: 23932022 [TBL] [Abstract][Full Text] [Related]
20. Cusp catastrophe models for cognitive workload and fatigue: a comparison of seven task types. Guastello SJ; Boeh H; Gorin H; Huschen S; Peters NE; Fabisch M; Poston K Nonlinear Dynamics Psychol Life Sci; 2013 Jan; 17(1):23-47. PubMed ID: 23244748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]