These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 29215041)

  • 21. Therapeutic potential of combined viral transduction and CRISPR/Cas9 gene editing in treating neurodegenerative diseases.
    Kuruvilla J; Sasmita AO; Ling APK
    Neurol Sci; 2018 Nov; 39(11):1827-1835. PubMed ID: 30076486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR genome engineering and viral gene delivery: a case of mutual attraction.
    Schmidt F; Grimm D
    Biotechnol J; 2015 Feb; 10(2):258-72. PubMed ID: 25663455
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient SSA-mediated precise genome editing using CRISPR/Cas9.
    Li X; Bai Y; Cheng X; Kalds PGT; Sun B; Wu Y; Lv H; Xu K; Zhang Z
    FEBS J; 2018 Sep; 285(18):3362-3375. PubMed ID: 30085411
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in CRISPR/Cas9 Genome Editing for the Treatment of Muscular Dystrophies.
    Fatehi S; Marks RM; Rok MJ; Perillat L; Ivakine EA; Cohn RD
    Hum Gene Ther; 2023 May; 34(9-10):388-403. PubMed ID: 37119122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
    Wang S; Dong S; Wang P; Tao Y; Wang Y
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147
    [No Abstract]   [Full Text] [Related]  

  • 26. A novel human muscle cell model of Duchenne muscular dystrophy created by CRISPR/Cas9 and evaluation of antisense-mediated exon skipping.
    Shimo T; Hosoki K; Nakatsuji Y; Yokota T; Obika S
    J Hum Genet; 2018 Mar; 63(3):365-375. PubMed ID: 29339778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Therapeutic Applications of CRISPR/Cas for Duchenne Muscular Dystrophy.
    Wong TWY; Cohn RD
    Curr Gene Ther; 2017; 17(4):301-308. PubMed ID: 29173172
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis.
    Hong KQ; Liu DY; Chen T; Wang ZW
    World J Microbiol Biotechnol; 2018 Sep; 34(10):153. PubMed ID: 30269229
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human Papillomavirus Oncogene Manipulation Using Clustered Regularly Interspersed Short Palindromic Repeats/Cas9 Delivered by pH-Sensitive Cationic Liposomes.
    Zhen S; Liu Y; Lu J; Tuo X; Yang X; Chen H; Chen W; Li X
    Hum Gene Ther; 2020 Mar; 31(5-6):309-324. PubMed ID: 31973584
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adenoviral Vectors Armed with PAPILLOMAVIRUs Oncogene Specific CRISPR/Cas9 Kill Human-Papillomavirus-Induced Cervical Cancer Cells.
    Ehrke-Schulz E; Heinemann S; Schulte L; Schiwon M; Ehrhardt A
    Cancers (Basel); 2020 Jul; 12(7):. PubMed ID: 32708897
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology.
    Alagoz Y; Gurkok T; Zhang B; Unver T
    Sci Rep; 2016 Aug; 6():30910. PubMed ID: 27483984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-Capacity Adenoviral Vectors Permit Robust and Versatile Testing of
    Brescia M; Janssen JM; Liu J; Gonçalves MAFV
    Cells; 2020 Apr; 9(4):. PubMed ID: 32252479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox.
    Senís E; Fatouros C; Große S; Wiedtke E; Niopek D; Mueller AK; Börner K; Grimm D
    Biotechnol J; 2014 Nov; 9(11):1402-12. PubMed ID: 25186301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR/Cas9 therapeutics for liver diseases.
    Aravalli RN; Steer CJ
    J Cell Biochem; 2018 Jun; 119(6):4265-4278. PubMed ID: 29266637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR-Cas9-mediated genome editing in apple and grapevine.
    Osakabe Y; Liang Z; Ren C; Nishitani C; Osakabe K; Wada M; Komori S; Malnoy M; Velasco R; Poli M; Jung MH; Koo OJ; Viola R; Nagamangala Kanchiswamy C
    Nat Protoc; 2018 Dec; 13(12):2844-2863. PubMed ID: 30390050
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications.
    Liu C; Zhang L; Liu H; Cheng K
    J Control Release; 2017 Nov; 266():17-26. PubMed ID: 28911805
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential.
    Oude Blenke E; Evers MJ; Mastrobattista E; van der Oost J
    J Control Release; 2016 Dec; 244(Pt B):139-148. PubMed ID: 27498021
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Creation of DMD Muscle Cell Model Using CRISPR-Cas9 Genome Editing to Test the Efficacy of Antisense-Mediated Exon Skipping.
    Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():165-171. PubMed ID: 30171541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent Advances in CRISPR/Cas9 Delivery Strategies.
    Yip BH
    Biomolecules; 2020 May; 10(6):. PubMed ID: 32486234
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo editing of the pan-endothelium by immunity evading simian adenoviral vector.
    Lorincz R; Alvarez AB; Walkey CJ; Mendonça SA; Lu ZH; Martinez AE; Ljungberg C; Heaney JD; Lagor WR; Curiel DT
    Biomed Pharmacother; 2023 Feb; 158():114189. PubMed ID: 36587560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.