These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
420 related articles for article (PubMed ID: 29215090)
1. In vivo genome editing via the HITI method as a tool for gene therapy. Suzuki K; Izpisua Belmonte JC J Hum Genet; 2018 Feb; 63(2):157-164. PubMed ID: 29215090 [TBL] [Abstract][Full Text] [Related]
2. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Suzuki K; Tsunekawa Y; Hernandez-Benitez R; Wu J; Zhu J; Kim EJ; Hatanaka F; Yamamoto M; Araoka T; Li Z; Kurita M; Hishida T; Li M; Aizawa E; Guo S; Chen S; Goebl A; Soligalla RD; Qu J; Jiang T; Fu X; Jafari M; Esteban CR; Berggren WT; Lajara J; Nuñez-Delicado E; Guillen P; Campistol JM; Matsuzaki F; Liu GH; Magistretti P; Zhang K; Callaway EM; Zhang K; Belmonte JC Nature; 2016 Dec; 540(7631):144-149. PubMed ID: 27851729 [TBL] [Abstract][Full Text] [Related]
3. CRISPR/Cas9 system: a powerful technology for in vivo and ex vivo gene therapy. Zhang X; Wang L; Liu M; Li D Sci China Life Sci; 2017 May; 60(5):468-475. PubMed ID: 28534255 [TBL] [Abstract][Full Text] [Related]
4. In vivo genome editing via CRISPR/Cas9-mediated homology-independent targeted integration for Bietti crystalline corneoretinal dystrophy treatment. Meng X; Jia R; Zhao X; Zhang F; Chen S; Yu S; Liu X; Dou H; Feng X; Zhang J; Wang N; Xu B; Yang L Nat Commun; 2024 May; 15(1):3773. PubMed ID: 38710738 [TBL] [Abstract][Full Text] [Related]
5. CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery. Wang HX; Li M; Lee CM; Chakraborty S; Kim HW; Bao G; Leong KW Chem Rev; 2017 Aug; 117(15):9874-9906. PubMed ID: 28640612 [TBL] [Abstract][Full Text] [Related]
6. Precise in vivo genome editing via single homology arm donor mediated intron-targeting gene integration for genetic disease correction. Suzuki K; Yamamoto M; Hernandez-Benitez R; Li Z; Wei C; Soligalla RD; Aizawa E; Hatanaka F; Kurita M; Reddy P; Ocampo A; Hishida T; Sakurai M; Nemeth AN; Nuñez Delicado E; Campistol JM; Magistretti P; Guillen P; Rodriguez Esteban C; Gong J; Yuan Y; Gu Y; Liu GH; López-Otín C; Wu J; Zhang K; Izpisua Belmonte JC Cell Res; 2019 Oct; 29(10):804-819. PubMed ID: 31444470 [TBL] [Abstract][Full Text] [Related]
7. CRISPR/Cas9-mediated correction of human genetic disease. Men K; Duan X; He Z; Yang Y; Yao S; Wei Y Sci China Life Sci; 2017 May; 60(5):447-457. PubMed ID: 28534256 [TBL] [Abstract][Full Text] [Related]
8. In Vivo Delivery of CRISPR/Cas9 for Therapeutic Gene Editing: Progress and Challenges. Mout R; Ray M; Lee YW; Scaletti F; Rotello VM Bioconjug Chem; 2017 Apr; 28(4):880-884. PubMed ID: 28263568 [TBL] [Abstract][Full Text] [Related]
9. Genome editing for inborn errors of metabolism: advancing towards the clinic. Schneller JL; Lee CM; Bao G; Venditti CP BMC Med; 2017 Feb; 15(1):43. PubMed ID: 28238287 [TBL] [Abstract][Full Text] [Related]
10. Gene Editing of Human Hematopoietic Stem and Progenitor Cells: Promise and Potential Hurdles. Yu KR; Natanson H; Dunbar CE Hum Gene Ther; 2016 Oct; 27(10):729-740. PubMed ID: 27483988 [TBL] [Abstract][Full Text] [Related]
11. Transposase-CRISPR mediated targeted integration (TransCRISTI) in the human genome. Rezazade Bazaz M; Ghahramani Seno MM; Dehghani H Sci Rep; 2022 Mar; 12(1):3390. PubMed ID: 35232993 [TBL] [Abstract][Full Text] [Related]
12. Therapeutic homology-independent targeted integration in retina and liver. Tornabene P; Ferla R; Llado-Santaeularia M; Centrulo M; Dell'Anno M; Esposito F; Marrocco E; Pone E; Minopoli R; Iodice C; Nusco E; Rossi S; Lyubenova H; Manfredi A; Di Filippo L; Iuliano A; Torella A; Piluso G; Musacchia F; Surace EM; Cacchiarelli D; Nigro V; Auricchio A Nat Commun; 2022 Apr; 13(1):1963. PubMed ID: 35414130 [TBL] [Abstract][Full Text] [Related]
13. Genome Editing of Structural Variations: Modeling and Gene Correction. Park CY; Sung JJ; Kim DW Trends Biotechnol; 2016 Jul; 34(7):548-561. PubMed ID: 27016031 [TBL] [Abstract][Full Text] [Related]
14. CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells. Kim EJ; Kang KH; Ju JH Korean J Intern Med; 2017 Jan; 32(1):42-61. PubMed ID: 28049282 [TBL] [Abstract][Full Text] [Related]
15. Efficient in vivo gene editing using ribonucleoproteins in skin stem cells of recessive dystrophic epidermolysis bullosa mouse model. Wu W; Lu Z; Li F; Wang W; Qian N; Duan J; Zhang Y; Wang F; Chen T Proc Natl Acad Sci U S A; 2017 Feb; 114(7):1660-1665. PubMed ID: 28137859 [TBL] [Abstract][Full Text] [Related]
16. Delivery methods for site-specific nucleases: Achieving the full potential of therapeutic gene editing. Liu J; Shui SL J Control Release; 2016 Dec; 244(Pt A):83-97. PubMed ID: 27865852 [TBL] [Abstract][Full Text] [Related]
17. Recent Progress in Genome Editing Approaches for Inherited Cardiovascular Diseases. Kaur B; Perea-Gil I; Karakikes I Curr Cardiol Rep; 2018 Jun; 20(7):58. PubMed ID: 29860642 [TBL] [Abstract][Full Text] [Related]
18. [Genome Editing Tools and their Application in Experimental Ophthalmology]. Yanik M; Wende W; Stieger K Klin Monbl Augenheilkd; 2017 Mar; 234(3):329-334. PubMed ID: 28114701 [TBL] [Abstract][Full Text] [Related]
19. In vivo genome editing as a potential treatment strategy for inherited retinal dystrophies. Yanik M; Müller B; Song F; Gall J; Wagner F; Wende W; Lorenz B; Stieger K Prog Retin Eye Res; 2017 Jan; 56():1-18. PubMed ID: 27623223 [TBL] [Abstract][Full Text] [Related]
20. From Genomics to Gene Therapy: Induced Pluripotent Stem Cells Meet Genome Editing. Hotta A; Yamanaka S Annu Rev Genet; 2015; 49():47-70. PubMed ID: 26407033 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]