These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 29215091)

  • 1. Cancer induction and suppression with transcriptional control and epigenome editing technologies.
    Nakade S; Yamamoto T; Sakuma T
    J Hum Genet; 2018 Feb; 63(2):187-194. PubMed ID: 29215091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenome Editing in the Brain.
    Bashtrykov P; Jeltsch A
    Adv Exp Med Biol; 2017; 978():409-424. PubMed ID: 28523558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Editing the Epigenome: Reshaping the Genomic Landscape.
    Holtzman L; Gersbach CA
    Annu Rev Genomics Hum Genet; 2018 Aug; 19():43-71. PubMed ID: 29852072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas mediated epigenome editing for cancer therapy.
    Ansari I; Chaturvedi A; Chitkara D; Singh S
    Semin Cancer Biol; 2022 Aug; 83():570-583. PubMed ID: 33421620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reader-Effectors as Actuators of Epigenome Editing.
    Kim SH; Haynes KA
    Methods Mol Biol; 2024; 2842():103-127. PubMed ID: 39012592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances of epigenetic editing.
    Gjaltema RAF; Rots MG
    Curr Opin Chem Biol; 2020 Aug; 57():75-81. PubMed ID: 32619853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenome editing technologies for discovery and medicine.
    McCutcheon SR; Rohm D; Iglesias N; Gersbach CA
    Nat Biotechnol; 2024 Aug; 42(8):1199-1217. PubMed ID: 39075148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Editing the Epigenome to Tackle Brain Disorders.
    Liu XS; Jaenisch R
    Trends Neurosci; 2019 Dec; 42(12):861-870. PubMed ID: 31706628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells.
    Okada M; Kanamori M; Someya K; Nakatsukasa H; Yoshimura A
    Epigenetics Chromatin; 2017; 10():24. PubMed ID: 28503202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allele-Specific Epigenome Editing.
    Bashtrykov P; Jeltsch A
    Methods Mol Biol; 2018; 1767():137-146. PubMed ID: 29524132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenome Editing: State of the Art, Concepts, and Perspectives.
    Kungulovski G; Jeltsch A
    Trends Genet; 2016 Feb; 32(2):101-113. PubMed ID: 26732754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Editing the epigenome: technologies for programmable transcription and epigenetic modulation.
    Thakore PI; Black JB; Hilton IB; Gersbach CA
    Nat Methods; 2016 Feb; 13(2):127-37. PubMed ID: 26820547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenome editing in cancer: Advances and challenges for potential therapeutic options.
    Lee SW; Frankston CM; Kim J
    Int Rev Cell Mol Biol; 2024; 383():191-230. PubMed ID: 38359969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of TALE-Based Designer Epigenome Modifiers.
    Nitsch S; Mussolino C
    Methods Mol Biol; 2018; 1767():89-109. PubMed ID: 29524130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo locus-specific editing of the neuroepigenome.
    Yim YY; Teague CD; Nestler EJ
    Nat Rev Neurosci; 2020 Sep; 21(9):471-484. PubMed ID: 32704051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A versatile reporter system for multiplexed screening of effective epigenome editors.
    Roman Azcona MS; Fang Y; Carusillo A; Cathomen T; Mussolino C
    Nat Protoc; 2020 Oct; 15(10):3410-3440. PubMed ID: 32887975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin Manipulation and Editing: Challenges, New Technologies and Their Use in Plants.
    Fal K; Tomkova D; Vachon G; Chabouté ME; Berr A; Carles CC
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33419220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Greater Than the Sum of Parts: Complexity of the Dynamic Epigenome.
    Soshnev AA; Josefowicz SZ; Allis CD
    Mol Cell; 2016 Jun; 62(5):681-94. PubMed ID: 27259201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induced pluripotent stem cell technology for dissecting the cancer epigenome.
    Semi K; Yamada Y
    Cancer Sci; 2015 Oct; 106(10):1251-6. PubMed ID: 26224327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic editing: Dissecting chromatin function in context.
    Policarpi C; Dabin J; Hackett JA
    Bioessays; 2021 May; 43(5):e2000316. PubMed ID: 33724509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.