BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29215184)

  • 1. A Single Mutation Increases the Activity and Stability of Pectobacterium carotovorum Nitrile Reductase.
    Zhou Z; Li M; Xu JH; Zhang ZJ
    Chembiochem; 2018 Mar; 19(5):521-526. PubMed ID: 29215184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting the substrate binding site of E. coli nitrile reductase QueF by modeling, substrate and enzyme engineering.
    Wilding B; Winkler M; Petschacher B; Kratzer R; Egger S; Steinkellner G; Lyskowski A; Nidetzky B; Gruber K; Klempier N
    Chemistry; 2013 May; 19(22):7007-12. PubMed ID: 23595998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of a sequestered imine intermediate during reduction of nitrile to amine by the nitrile reductase QueF from
    Jung J; Nidetzky B
    J Biol Chem; 2018 Mar; 293(10):3720-3733. PubMed ID: 29339556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-assisted engineering of the catalytic activity of a carboxylic acid reductase.
    Qu G; Liu B; Zhang K; Jiang Y; Guo J; Wang R; Miao Y; Zhai C; Sun Z
    J Biotechnol; 2019 Dec; 306():97-104. PubMed ID: 31550488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Streptomyces coelicolor Carbonyl Reductase for Efficient Atorvastatin Precursor Synthesis.
    Li M; Zhang ZJ; Kong XD; Yu HL; Zhou J; Xu JH
    Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389544
    [No Abstract]   [Full Text] [Related]  

  • 6. Significantly improved thermostability of a reductase CgKR1 from Candida glabrata with a key mutation at Asp 138 for enhancing bioreduction of aromatic α-keto esters.
    Huang L; Xu JH; Yu HL
    J Biotechnol; 2015 Jun; 203():54-61. PubMed ID: 25795440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic studies of Bacillus subtilis QueF, the nitrile oxidoreductase involved in queuosine biosynthesis.
    Lee BW; Van Lanen SG; Iwata-Reuyl D
    Biochemistry; 2007 Nov; 46(44):12844-54. PubMed ID: 17929836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unexpected NADPH Hydratase Activity in the Nitrile Reductase QueF from Escherichia coli.
    Jung J; Braun J; Czabany T; Nidetzky B
    Chembiochem; 2020 May; 21(10):1534-1543. PubMed ID: 31850614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progesterone 5β-reductases/iridoid synthases (PRISE): gatekeeper role of highly conserved phenylalanines in substrate preference and trapping is supported by molecular dynamics simulations.
    Petersen J; Lanig H; Munkert J; Bauer P; Müller-Uri F; Kreis W
    J Biomol Struct Dyn; 2016 Aug; 34(8):1667-80. PubMed ID: 26457532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and characterization of the nitrile reductase queF from E. coli.
    Moeller K; Nguyen GS; Hollmann F; Hanefeld U
    Enzyme Microb Technol; 2013 Mar; 52(3):129-33. PubMed ID: 23410922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the archaeosine synthase QueF-like-Insights into amidino transfer and tRNA recognition by the tunnel fold.
    Mei X; Alvarez J; Bon Ramos A; Samanta U; Iwata-Reuyl D; Swairjo MA
    Proteins; 2017 Jan; 85(1):103-116. PubMed ID: 27802572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring an aldo-keto reductase KmAKR for robust thermostability and catalytic efficiency by stepwise evolution and structure-guided consensus engineering.
    Li SF; Xie JY; Qiu S; Zhou SY; Wang YJ; Zheng YG
    Bioorg Chem; 2021 Apr; 109():104712. PubMed ID: 33735657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of novel family of reductases from PCR based library for the synthesis of chiral alcohols and amines.
    Sehajpal P; Kirar S; Ghosh S; Banerjee UC
    Enzyme Microb Technol; 2018 Nov; 118():83-91. PubMed ID: 30143204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometric Remodeling of Nitrilase Active Pocket Based on ALF-Scanning Strategy To Enhance Aromatic Nitrile Substrate Preference and Catalytic Efficiency.
    Wang ZK; Gong JS; Feng DT; Su C; Li H; Rao ZM; Lu ZM; Shi JS; Xu ZH
    Appl Environ Microbiol; 2023 Jun; 89(6):e0022023. PubMed ID: 37191513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facilitating the Evolution of Esterase Activity from a Promiscuous Enzyme (Mhg) with Catalytic Functions of Amide Hydrolysis and Carboxylic Acid Perhydrolysis by Engineering the Substrate Entrance Tunnel.
    Yan X; Wang J; Sun Y; Zhu J; Wu S
    Appl Environ Microbiol; 2016 Nov; 82(22):6748-6756. PubMed ID: 27613682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering towards nitroreductase functionality in ene-reductase scaffolds.
    Park JT; Gómez Ramos LM; Bommarius AS
    Chembiochem; 2015 Mar; 16(5):811-8. PubMed ID: 25703443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity Improvement and Vital Amino Acid Identification on the Marine-Derived Quorum Quenching Enzyme MomL by Protein Engineering.
    Wang J; Lin J; Zhang Y; Zhang J; Feng T; Li H; Wang X; Sun Q; Zhang X; Wang Y
    Mar Drugs; 2019 May; 17(5):. PubMed ID: 31117226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering the residues on "A" surface and C-terminal region to improve thermostability of nitrilase.
    Xu Z; Cai T; Xiong N; Zou SP; Xue YP; Zheng YG
    Enzyme Microb Technol; 2018 Jun; 113():52-58. PubMed ID: 29602387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of a casB gene encoding β-glucosidase of Pectobacterium carotovorum subsp. carotovorum LY34.
    Kim MK; An CL; Kang TH; Kim J; Kim H; Yun HD
    Microbiol Res; 2013 Mar; 168(3):138-46. PubMed ID: 23176777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A single amino acid determines the catalytic efficiency of two alkenal double bond reductases produced by the liverwort Plagiochasma appendiculatum.
    Wu Y; Cai Y; Sun Y; Xu R; Yu H; Han X; Lou H; Cheng A
    FEBS Lett; 2013 Sep; 587(18):3122-8. PubMed ID: 23954295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.