BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29215184)

  • 41. Engineering substrate specificity of succinic semialdehyde reductase (AKR7A5) for efficient conversion of levulinic acid to 4-hydroxyvaleric acid.
    Yeon YJ; Park HY; Yoo YJ
    J Biotechnol; 2015 Sep; 210():38-43. PubMed ID: 26113216
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional characterization of the sucrose isomerase responsible for trehalulose production in plant-associated Pectobacterium species.
    Nam CH; Seo DH; Jung JH; Koh YJ; Jung JS; Heu S; Oh CS; Park CS
    Enzyme Microb Technol; 2014 Feb; 55():100-6. PubMed ID: 24411451
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Function of flgK gene in Pectobacterium carotovorum subsp, carotovorum].
    Yang Z; Deng Y; Du S; Li T; Jiang H; Liu F; Fan J
    Wei Sheng Wu Xue Bao; 2012 Jun; 52(6):703-9. PubMed ID: 22934350
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-resolution structure of the nitrile reductase QueF combined with molecular simulations provide insight into enzyme mechanism.
    Kim Y; Zhou M; Moy S; Morales J; Cunningham MA; Joachimiak A
    J Mol Biol; 2010 Nov; 404(1):127-37. PubMed ID: 20875425
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Engineering Carboxylic Acid Reductase (CAR) through a Whole-Cell Growth-Coupled NADPH Recycling Strategy.
    Kramer L; Le X; Rodriguez M; Wilson MA; Guo J; Niu W
    ACS Synth Biol; 2020 Jul; 9(7):1632-1637. PubMed ID: 32589835
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular characterization of a novel thermal stable reductase capable of decoloration of both azo and triphenylmethane dyes.
    Gao F; Ding H; Shao L; Xu X; Zhao Y
    Appl Microbiol Biotechnol; 2015 Jan; 99(1):255-67. PubMed ID: 24974280
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermodynamic characterization of the DmsD binding site for the DmsA twin-arginine motif.
    Winstone TM; Turner RJ
    Biochemistry; 2015 Mar; 54(11):2040-51. PubMed ID: 25659414
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Directed evolution of enzymes for applied biocatalysis.
    Turner NJ
    Trends Biotechnol; 2003 Nov; 21(11):474-8. PubMed ID: 14573359
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improved catalytic properties of a serine hydroxymethyl transferase from Idiomarina loihiensis by site directed mutagenesis.
    Kumar A; Wu G; Wu Z; Kumar N; Liu Z
    Int J Biol Macromol; 2018 Oct; 117():1216-1223. PubMed ID: 29727646
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Awakening the Sleeping Carboxylase Function of Enzymes: Engineering the Natural CO
    Bernhardsgrütter I; Schell K; Peter DM; Borjian F; Saez DA; Vöhringer-Martinez E; Erb TJ
    J Am Chem Soc; 2019 Jun; 141(25):9778-9782. PubMed ID: 31188584
    [TBL] [Abstract][Full Text] [Related]  

  • 51. One-step combined focused epPCR and saturation mutagenesis for thermostability evolution of a new cold-active xylanase.
    Acevedo JP; Reetz MT; Asenjo JA; Parra LP
    Enzyme Microb Technol; 2017 May; 100():60-70. PubMed ID: 28284313
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of xenobiotic reductase A (XenA): study of active site residues, substrate spectrum and stability.
    Yanto Y; Yu HH; Hall M; Bommarius AS
    Chem Commun (Camb); 2010 Dec; 46(46):8809-11. PubMed ID: 20959917
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Truncation of N-terminal regions of Digitalis lanata progesterone 5β-reductase alters catalytic efficiency and substrate preference.
    Rudolph K; Bauer P; Schmid B; Mueller-Uri F; Kreis W
    Biochimie; 2014 Jun; 101():31-8. PubMed ID: 24370479
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expanding the substrate scope of chitooligosaccharide oxidase from Fusarium graminearum by structure-inspired mutagenesis.
    Ferrari AR; Lee M; Fraaije MW
    Biotechnol Bioeng; 2015 Jun; 112(6):1074-80. PubMed ID: 25565162
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Combinatorial evolution of phosphotriesterase toward a robust malathion degrader by hierarchical iteration mutagenesis.
    Luo XJ; Zhao J; Li CX; Bai YP; Reetz MT; Yu HL; Xu JH
    Biotechnol Bioeng; 2016 Nov; 113(11):2350-7. PubMed ID: 27216910
    [TBL] [Abstract][Full Text] [Related]  

  • 56. OmpF of Pectobacterium carotovorum subsp. carotovorum Pcc3 is required for carocin D sensitivity.
    Lim JA; Hong J; Kim J; Heu S; Roh E
    FEMS Microbiol Lett; 2016 Dec; 363(23):. PubMed ID: 27915254
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Natural products from isnA-containing biosynthetic gene clusters recovered from the genomes of cultured and uncultured bacteria.
    Brady SF; Bauer JD; Clarke-Pearson MF; Daniels R
    J Am Chem Soc; 2007 Oct; 129(40):12102-3. PubMed ID: 17880089
    [No Abstract]   [Full Text] [Related]  

  • 58. DiRect: Site-directed mutagenesis method for protein engineering by rational design.
    Watanabe S; Ito M; Kigawa T
    Biochem Biophys Res Commun; 2021 Apr; 551():107-113. PubMed ID: 33725571
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mutational modulation of substrate bond-type specificity and thermostability of glucoamylase from Aspergillus awamori by replacement with short homologue active site sequences and thiol/disulfide engineering.
    Fierobe HP; Stoffer BB; Frandsen TP; Svensson B
    Biochemistry; 1996 Jul; 35(26):8696-704. PubMed ID: 8679632
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site-directed mutagenesis.
    Zhong CQ; Song S; Fang N; Liang X; Zhu H; Tang XF; Tang B
    Biotechnol Bioeng; 2009 Dec; 104(5):862-70. PubMed ID: 19609954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.