BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 29215550)

  • 41. High-level production of poly-γ-glutamic acid by a newly isolated
    He F; Gao B; Cheng X; Zhai J; Zhang X; Yang C; Jiewei T
    Prep Biochem Biotechnol; 2024 May; 54(5):637-646. PubMed ID: 37768129
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Poly-γ-glutamic acid production by Bacillus subtilis 168 using glucose as the sole carbon source: A metabolomic analysis.
    Halmschlag B; Putri SP; Fukusaki E; Blank LM
    J Biosci Bioeng; 2020 Sep; 130(3):272-282. PubMed ID: 32546403
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metabolic engineering of Bacillus amyloliquefaciens for poly-gamma-glutamic acid (γ-PGA) overproduction.
    Feng J; Gu Y; Sun Y; Han L; Yang C; Zhang W; Cao M; Song C; Gao W; Wang S
    Microb Biotechnol; 2014 Sep; 7(5):446-55. PubMed ID: 24986065
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tailor-made poly-γ-glutamic acid production.
    Halmschlag B; Steurer X; Putri SP; Fukusaki E; Blank LM
    Metab Eng; 2019 Sep; 55():239-248. PubMed ID: 31344452
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Effects of metal ions on gamma-poly (glutamic acid) synthesis by Bacillus licheniformis].
    Yang G; Chen J; Qu YB; Lun SY
    Sheng Wu Gong Cheng Xue Bao; 2001 Nov; 17(6):706-9. PubMed ID: 11910770
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced poly(γ-glutamic acid) fermentation by Bacillus subtilis NX-2 immobilized in an aerobic plant fibrous-bed bioreactor.
    Xu Z; Feng X; Zhang D; Tang B; Lei P; Liang J; Xu H
    Bioresour Technol; 2014 Mar; 155():8-14. PubMed ID: 24398186
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of glucose on poly-γ-glutamic acid metabolism in Bacillus licheniformis.
    Yu W; Chen Z; Ye H; Liu P; Li Z; Wang Y; Li Q; Yan S; Zhong CJ; He N
    Microb Cell Fact; 2017 Feb; 16(1):22. PubMed ID: 28178965
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CRISPRi-Based Dynamic Regulation of Hydrolase for the Synthesis of Poly-γ-Glutamic Acid with Variable Molecular Weights.
    Sha Y; Qiu Y; Zhu Y; Sun T; Luo Z; Gao J; Feng X; Li S; Xu H
    ACS Synth Biol; 2020 Sep; 9(9):2450-2459. PubMed ID: 32794764
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of MreB paralogs on poly-γ-glutamic acid synthesis and cell morphology in Bacillus amyloliquefaciens.
    Gao W; Zhang Z; Feng J; Dang Y; Quan Y; Gu Y; Wang S; Song C
    FEMS Microbiol Lett; 2016 Sep; 363(17):. PubMed ID: 27481703
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optimization of the production of poly-γ-glutamic acid by Bacillus amyloliquefaciens C1 in solid-state fermentation using dairy manure compost and monosodium glutamate production residues as basic substrates.
    Yong X; Raza W; Yu G; Ran W; Shen Q; Yang X
    Bioresour Technol; 2011 Aug; 102(16):7548-54. PubMed ID: 21665467
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improvement of poly-γ-glutamic acid biosynthesis in a moving bed biofilm reactor by Bacillus subtilis NX-2.
    Jiang Y; Tang B; Xu Z; Liu K; Xu Z; Feng X; Xu H
    Bioresour Technol; 2016 Oct; 218():360-6. PubMed ID: 27376835
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrofermentation increases concentration of poly γ-glutamic acid in Bacillus subtilis biofilms.
    Adilkhanova A; Ormantayeva A; Kaziullayeva A; Olaifa K; Eghtesadi N; Abbas AH; Calvio C; Pham TT; Ajunwa OM; Marsili E
    Microb Biotechnol; 2024 Mar; 17(3):e14426. PubMed ID: 38497275
    [TBL] [Abstract][Full Text] [Related]  

  • 53. New biological functions and applications of high-molecular-mass poly-gamma-glutamic acid.
    Poo H; Park C; Kwak MS; Choi DY; Hong SP; Lee IH; Lim YT; Choi YK; Bae SR; Uyama H; Kim CJ; Sung MH
    Chem Biodivers; 2010 Jun; 7(6):1555-62. PubMed ID: 20564573
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metabolic studies of temperature control strategy on poly(γ-glutamic acid) production in a thermophilic strain Bacillus subtilis GXA-28.
    Zeng W; Chen G; Wang Q; Zheng S; Shu L; Liang Z
    Bioresour Technol; 2014 Mar; 155():104-10. PubMed ID: 24434700
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of Jerusalem artichoke resource for efficient one-step fermentation of poly-(γ-glutamic acid) using a novel strain Bacillus amyloliquefaciens NX-2S.
    Qiu Y; Sha Y; Zhang Y; Xu Z; Li S; Lei P; Xu Z; Feng X; Xu H
    Bioresour Technol; 2017 Sep; 239():197-203. PubMed ID: 28521229
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phylogeny of gamma-polyglutamic acid-producing Bacillus strains isolated from fermented soybean foods manufactured in Asian countries.
    Meerak J; Iida H; Watanabe Y; Miyashita M; Sato H; Nakagawa Y; Tahara Y
    J Gen Appl Microbiol; 2007 Dec; 53(6):315-23. PubMed ID: 18187886
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigation of Glutamate Dependence Mechanism for Poly-γ-glutamic Acid Production in Bacillus subtilis on the Basis of Transcriptome Analysis.
    Sha Y; Sun T; Qiu Y; Zhu Y; Zhan Y; Zhang Y; Xu Z; Li S; Feng X; Xu H
    J Agric Food Chem; 2019 Jun; 67(22):6263-6274. PubMed ID: 31088055
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isolation of a novel poly-
    Mahaboob Ali AA; Momin B; Ghogare P
    Prep Biochem Biotechnol; 2020; 50(5):445-452. PubMed ID: 31873055
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhanced production of poly-γ-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis.
    Cai D; Chen Y; He P; Wang S; Mo F; Li X; Wang Q; Nomura CT; Wen Z; Ma X; Chen S
    Biotechnol Bioeng; 2018 Oct; 115(10):2541-2553. PubMed ID: 29940069
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Efficient Biosynthesis of Low-Molecular-Weight Poly-γ-glutamic Acid Based on Stereochemistry Regulation in
    Sha Y; Huang Y; Zhu Y; Sun T; Luo Z; Qiu Y; Zhan Y; Lei P; Li S; Xu H
    ACS Synth Biol; 2020 Jun; 9(6):1395-1405. PubMed ID: 32353226
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.