BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 29215586)

  • 1. Investigation of Polyamine Metabolism and Homeostasis in Pancreatic Cancers.
    Massaro C; Thomas J; Phanstiel Iv O
    Med Sci (Basel); 2017 Dec; 5(4):. PubMed ID: 29215586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP13A3 and caveolin-1 as potential biomarkers for difluoromethylornithine-based therapies in pancreatic cancers.
    Madan M; Patel A; Skruber K; Geerts D; Altomare DA; Iv OP
    Am J Cancer Res; 2016; 6(6):1231-52. PubMed ID: 27429841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Difluoromethylornithine Combined with a Polyamine Transport Inhibitor Is Effective against Gemcitabine Resistant Pancreatic Cancer.
    Gitto SB; Pandey V; Oyer JL; Copik AJ; Hogan FC; Phanstiel O; Altomare DA
    Mol Pharm; 2018 Feb; 15(2):369-376. PubMed ID: 29299930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The discovery of indolone GW5074 during a comprehensive search for non-polyamine-based polyamine transport inhibitors.
    Dobrovolskaite A; Madan M; Pandey V; Altomare DA; Phanstiel O
    Int J Biochem Cell Biol; 2021 Sep; 138():106038. PubMed ID: 34252566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyamine transport inhibitors: design, synthesis, and combination therapies with difluoromethylornithine.
    Muth A; Madan M; Archer JJ; Ocampo N; Rodriguez L; Phanstiel O
    J Med Chem; 2014 Jan; 57(2):348-63. PubMed ID: 24405276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Polyamine Lassos as Polyamine Transport Inhibitors.
    Dobrovolskaite A; Gardner RA; Delcros JG; Phanstiel O
    ACS Med Chem Lett; 2022 Feb; 13(2):319-326. PubMed ID: 35178189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AMXT-1501, a novel polyamine transport inhibitor, synergizes with DFMO in inhibiting neuroblastoma cell proliferation by targeting both ornithine decarboxylase and polyamine transport.
    Samal K; Zhao P; Kendzicky A; Yco LP; McClung H; Gerner E; Burns M; Bachmann AS; Sholler G
    Int J Cancer; 2013 Sep; 133(6):1323-33. PubMed ID: 23457004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison and characterization of growth inhibition in L1210 cells by alpha-difluoromethylornithine, an inhibitor of ornithine decarboxylase, and N1,N8-bis(ethyl)spermidine, an apparent regulator of the enzyme.
    Porter CW; Ganis B; Vinson T; Marton LJ; Kramer DL; Bergeron RJ
    Cancer Res; 1986 Dec; 46(12 Pt 1):6279-85. PubMed ID: 3096560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estradiol control of ornithine decarboxylase mRNA, enzyme activity, and polyamine levels in MCF-7 breast cancer cells: therapeutic implications.
    Thomas T; Thomas TJ
    Breast Cancer Res Treat; 1994 Feb; 29(2):189-201. PubMed ID: 8012036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytotoxic response of the relatively difluoromethylornithine-resistant human lung tumor cell line NCI H157 to the polyamine analogue N1,N8-bis(ethyl)spermidine.
    Casero RA; Go B; Theiss HW; Smith J; Baylin SB; Luk GD
    Cancer Res; 1987 Aug; 47(15):3964-7. PubMed ID: 3038303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Curcumin mediates polyamine metabolism and sensitizes gastrointestinal cancer cells to antitumor polyamine-targeted therapies.
    Murray-Stewart T; Dunworth M; Lui Y; Giardiello FM; Woster PM; Casero RA
    PLoS One; 2018; 13(8):e0202677. PubMed ID: 30138353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyamine content of Pneumocystis carinii and response to the ornithine decarboxylase inhibitor DL-alpha-difluoromethylornithine.
    Merali S; Clarkson AB
    Antimicrob Agents Chemother; 1996 Apr; 40(4):973-8. PubMed ID: 8849262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Individual and combined effects of alpha-difluoromethylornithine and ovariectomy on the growth and polyamine milieu of experimental breast cancer in rats.
    Manni A; Badger B; Glikman P; Bartholomew M; Santner S; Demers L
    Cancer Res; 1989 Jul; 49(13):3529-34. PubMed ID: 2499419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of various intracellular regulatory mechanisms of polyamine metabolism in camostate-induced pancreatic growth in rats.
    Löser C; Fölsch UR
    Digestion; 1993; 54(4):213-23. PubMed ID: 8243835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An overview of polyamine metabolism in pancreatic ductal adenocarcinoma.
    Phanstiel O
    Int J Cancer; 2018 May; 142(10):1968-1976. PubMed ID: 29134652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of difluoromethylornithine on proliferation, polyamine content and plating efficiency of cultured human carcinoma cells.
    Seidenfeld J
    Cancer Chemother Pharmacol; 1985; 15(3):196-202. PubMed ID: 3931927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyamines in pancreatic growth.
    Fölsch UR; Löser C; Alves F
    Digestion; 1990; 46 Suppl 2():345-51. PubMed ID: 2262066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyamines as biomarkers of cervical intraepithelial neoplasia.
    Nishioka K; Melgarejo AB; Lyon RR; Mitchell MF
    J Cell Biochem Suppl; 1995; 23():87-95. PubMed ID: 8747382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epidermal growth factor: modulator of murine embryonic palate mesenchymal cell proliferation, polyamine biosynthesis, and polyamine transport.
    Gawel-Thompson KJ; Greene RM
    J Cell Physiol; 1989 Aug; 140(2):359-70. PubMed ID: 2501317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Polyamine Transport Inhibitors in a Drosophila Epithelial Model Suggests the Existence of Multiple Transport Systems.
    Wang M; Phanstiel O; von Kalm L
    Med Sci (Basel); 2017 Nov; 5(4):. PubMed ID: 29135915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.