These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 29215893)

  • 1. Bright Electroluminescence from Single Graphene Nanoribbon Junctions.
    Chong MC; Afshar-Imani N; Scheurer F; Cardoso C; Ferretti A; Prezzi D; Schull G
    Nano Lett; 2018 Jan; 18(1):175-181. PubMed ID: 29215893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling the emission frequency of graphene nanoribbon emitters based on spatially excited topological boundary states.
    Wu X; Wang R; Liu N; Zou H; Shao B; Shao L; Yam C
    Phys Chem Chem Phys; 2020 Apr; 22(16):8277-8283. PubMed ID: 32182306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenyl Functionalization of Atomically Precise Graphene Nanoribbons for Engineering Inter-ribbon Interactions and Graphene Nanopores.
    Shekhirev M; Zahl P; Sinitskii A
    ACS Nano; 2018 Aug; 12(8):8662-8669. PubMed ID: 30085655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sub-5 nm Contacts and Induced p-n Junction Formation in Individual Atomically Precise Graphene Nanoribbons.
    Huang PC; Sun H; Sarker M; Caroff CM; Girolami GS; Sinitskii A; Lyding JW
    ACS Nano; 2023 Sep; 17(18):17771-17778. PubMed ID: 37581379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Edge States of Graphene Nanoribbons for Narrow-Band Photoluminescence.
    Ma C; Xiao Z; Puretzky AA; Wang H; Mohsin A; Huang J; Liang L; Luo Y; Lawrie BJ; Gu G; Lu W; Hong K; Bernholc J; Li AP
    ACS Nano; 2020 Apr; 14(4):5090-5098. PubMed ID: 32283017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping the Conductance of Electronically Decoupled Graphene Nanoribbons.
    Jacobse PH; Mangnus MJJ; Zevenhuizen SJM; Swart I
    ACS Nano; 2018 Jul; 12(7):7048-7056. PubMed ID: 29939719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100).
    Radocea A; Sun T; Vo TH; Sinitskii A; Aluru NR; Lyding JW
    Nano Lett; 2017 Jan; 17(1):170-178. PubMed ID: 27936761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ordinary and Hot Electroluminescence from Single-Molecule Devices: Controlling the Emission Color by Chemical Engineering.
    Chong MC; Sosa-Vargas L; Bulou H; Boeglin A; Scheurer F; Mathevet F; Schull G
    Nano Lett; 2016 Oct; 16(10):6480-6484. PubMed ID: 27652517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer-Free Synthesis of Atomically Precise Graphene Nanoribbons on Insulating Substrates.
    Mutlu Z; Llinas JP; Jacobse PH; Piskun I; Blackwell R; Crommie MF; Fischer FR; Bokor J
    ACS Nano; 2021 Feb; 15(2):2635-2642. PubMed ID: 33492120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic components embedded in a single graphene nanoribbon.
    Jacobse PH; Kimouche A; Gebraad T; Ervasti MM; Thijssen JM; Liljeroth P; Swart I
    Nat Commun; 2017 Jul; 8(1):119. PubMed ID: 28743870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inducing metallicity in graphene nanoribbons via zero-mode superlattices.
    Rizzo DJ; Veber G; Jiang J; McCurdy R; Cao T; Bronner C; Chen T; Louie SG; Fischer FR; Crommie MF
    Science; 2020 Sep; 369(6511):1597-1603. PubMed ID: 32973025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concentration Dependence of Dopant Electronic Structure in Bottom-up Graphene Nanoribbons.
    Pedramrazi Z; Chen C; Zhao F; Cao T; Nguyen GD; Omrani AA; Tsai HZ; Cloke RR; Marangoni T; Rizzo DJ; Joshi T; Bronner C; Choi WW; Fischer FR; Louie SG; Crommie MF
    Nano Lett; 2018 Jun; 18(6):3550-3556. PubMed ID: 29851493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Confined Hydrogenation of Graphene Nanoribbons.
    Sung YY; Vejayan H; Baddeley CJ; Richardson NV; Grillo F; Schaub R
    ACS Nano; 2022 Jul; 16(7):10281-10291. PubMed ID: 35786912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of the Topological Energy Band in Graphene Nanoribbons.
    Sun Q; Yan Y; Yao X; Müllen K; Narita A; Fasel R; Ruffieux P
    J Phys Chem Lett; 2021 Sep; 12(35):8679-8684. PubMed ID: 34472868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified Engineering of Graphene Nanoribbons Prepared via On-Surface Synthesis.
    Zhou X; Yu G
    Adv Mater; 2020 Feb; 32(6):e1905957. PubMed ID: 31830353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomically Precise Incorporation of BN-Doped Rubicene into Graphene Nanoribbons.
    Pawlak R; Anindya KN; Shimizu T; Liu JC; Sakamaki T; Shang R; Rochefort A; Nakamura E; Meyer E
    J Phys Chem C Nanomater Interfaces; 2022 Nov; 126(46):19726-19732. PubMed ID: 36466036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors.
    Chen YC; de Oteyza DG; Pedramrazi Z; Chen C; Fischer FR; Crommie MF
    ACS Nano; 2013 Jul; 7(7):6123-8. PubMed ID: 23746141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topologically localized excitons in single graphene nanoribbons.
    Jiang S; Neuman T; Boeglin A; Scheurer F; Schull G
    Science; 2023 Mar; 379(6636):1049-1054. PubMed ID: 36893241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Length-Dependent Evolution of Type II Heterojunctions in Bottom-Up-Synthesized Graphene Nanoribbons.
    Rizzo DJ; Wu M; Tsai HZ; Marangoni T; Durr RA; Omrani AA; Liou F; Bronner C; Joshi T; Nguyen GD; Rodgers GF; Choi WW; Jørgensen JH; Fischer FR; Louie SG; Crommie MF
    Nano Lett; 2019 May; 19(5):3221-3228. PubMed ID: 31002257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.