These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 29215896)

  • 1. High-Speed but Not Magic: Microwave-Assisted Synthesis of Ultra-Small Silver Nanoparticles.
    Saloga PEJ; Kästner C; Thünemann AF
    Langmuir; 2018 Jan; 34(1):147-153. PubMed ID: 29215896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.
    Gawande MB; Shelke SN; Zboril R; Varma RS
    Acc Chem Res; 2014 Apr; 47(4):1338-48. PubMed ID: 24666323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Access to small size distributions of nanoparticles by microwave-assisted synthesis. Formation of Ag nanoparticles in aqueous carboxymethylcellulose solutions in batch and continuous-flow reactors.
    Horikoshi S; Abe H; Torigoe K; Abe M; Serpone N
    Nanoscale; 2010 Aug; 2(8):1441-7. PubMed ID: 20820732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the formation of CuInS2 nanoparticles by the oleylamine route: comparison of microwave-assisted and conventional syntheses.
    Pein A; Baghbanzadeh M; Rath T; Haas W; Maier E; Amenitsch H; Hofer F; Kappe CO; Trimmel G
    Inorg Chem; 2011 Jan; 50(1):193-200. PubMed ID: 21141832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis.
    Dahal N; García S; Zhou J; Humphrey SM
    ACS Nano; 2012 Nov; 6(11):9433-46. PubMed ID: 23033897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From Silver Plates to Spherical Nanoparticles: Snapshots of Microwave-Assisted Polyol Synthesis.
    Torras M; Roig A
    ACS Omega; 2020 Mar; 5(11):5731-5738. PubMed ID: 32226851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous synthesis of monodispersed silver nanoparticles using a homogeneous heating microwave reactor system.
    Nishioka M; Miyakawa M; Kataoka H; Koda H; Sato K; Suzuki TM
    Nanoscale; 2011 Jun; 3(6):2621-6. PubMed ID: 21552644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ preparation of silver nanocomposites on cellulosic fibers--microwave vs. conventional heating.
    Breitwieser D; Moghaddam MM; Spirk S; Baghbanzadeh M; Pivec T; Fasl H; Ribitsch V; Kappe CO
    Carbohydr Polym; 2013 Apr; 94(1):677-86. PubMed ID: 23544590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave-assisted green synthesis of silver nanostructures.
    Nadagouda MN; Speth TF; Varma RS
    Acc Chem Res; 2011 Jul; 44(7):469-78. PubMed ID: 21526846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave-assisted synthesis of sensitive silver substrate for surface-enhanced Raman scattering spectroscopy.
    Xia L; Wang H; Wang J; Gong K; Jia Y; Zhang H; Sun M
    J Chem Phys; 2008 Oct; 129(13):134703. PubMed ID: 19045112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid continuous microwave-assisted synthesis of silver nanoparticles to achieve very high productivity and full yield: from mechanistic study to optimal fabrication strategy.
    Dzido G; Markowski P; Małachowska-Jutsz A; Prusik K; Jarzębski AB
    J Nanopart Res; 2015; 17(1):27. PubMed ID: 25620882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles.
    El-Naggar ME; Shaheen TI; Fouda MM; Hebeish AA
    Carbohydr Polym; 2016 Jan; 136():1128-36. PubMed ID: 26572455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-driven directional coalescence of silver nanoparticles.
    Yan S; Sun D; Gong Y; Tan Y; Xing X; Mo G; Chen Z; Cai Q; Li Z; Yu H; Wu Z
    J Synchrotron Radiat; 2016 May; 23(Pt 3):718-28. PubMed ID: 27140151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying the Nucleation and Growth Kinetics of Microwave Nanochemistry Enabled by in Situ High-Energy X-ray Scattering.
    Liu Q; Gao MR; Liu Y; Okasinski JS; Ren Y; Sun Y
    Nano Lett; 2016 Jan; 16(1):715-20. PubMed ID: 26625184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green synthesis of chondroitin sulfate-capped silver nanoparticles: characterization and surface modification.
    Cheng KM; Hung YW; Chen CC; Liu CC; Young JJ
    Carbohydr Polym; 2014 Sep; 110():195-202. PubMed ID: 24906746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave-assisted synthesis of CdSe quantum dots: can the electromagnetic field influence the formation and quality of the resulting nanocrystals?
    Moghaddam MM; Baghbanzadeh M; Keilbach A; Kappe CO
    Nanoscale; 2012 Dec; 4(23):7435-42. PubMed ID: 23085887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid microwave-assisted synthesis of sub-30nm lipid nanoparticles.
    Dunn SS; Beckford Vera DR; Benhabbour SR; Parrott MC
    J Colloid Interface Sci; 2017 Feb; 488():240-245. PubMed ID: 27835817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry.
    Herrero MA; Kremsner JM; Kappe CO
    J Org Chem; 2008 Jan; 73(1):36-47. PubMed ID: 18062704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-programmed microwave-assisted synthesis of SBA-15 ordered mesoporous silica.
    Celer EB; Jaroniec M
    J Am Chem Soc; 2006 Nov; 128(44):14408-14. PubMed ID: 17076515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green synthesis of silver nanoparticles in xylan solution via Tollens reaction and their detection for Hg(2+).
    Luo Y; Shen S; Luo J; Wang X; Sun R
    Nanoscale; 2015 Jan; 7(2):690-700. PubMed ID: 25429650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.