These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 29216070)

  • 21. Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth.
    Tao J; Yu X; Hu B; Dubrovkin A; Wang QJ
    Opt Lett; 2014 Jan; 39(2):271-4. PubMed ID: 24562124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical reflection modulation using surface plasmon resonance in a graphene-embedded hybrid plasmonic waveguide at an optical communication wavelength.
    Kim M; Jeong CY; Heo H; Kim S
    Opt Lett; 2015 Mar; 40(6):871-4. PubMed ID: 25768134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tunable band-pass plasmonic waveguide filters with nanodisk resonators.
    Lu H; Liu X; Mao D; Wang L; Gong Y
    Opt Express; 2010 Aug; 18(17):17922-7. PubMed ID: 20721178
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulation study on active control of electromagnetically induced transparency analogue in coupled photonic crystal nanobeam cavity-waveguide systems integrated with graphene.
    Jiang F; Deng CS; Lin Q; Wang LL
    Opt Express; 2019 Oct; 27(22):32122-32134. PubMed ID: 31684430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tunable plasmonic filter based on parallel bulk Dirac semimetals at terahertz frequencies.
    Zhuang H; Liu C; Li F; Zhuang J; Kong F; Li K
    Appl Opt; 2021 May; 60(13):3634-3640. PubMed ID: 33983295
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tunable plasmon-induced transparency in a grating-coupled double-layer graphene hybrid system at far-infrared frequencies.
    Zhao X; Zhu L; Yuan C; Yao J
    Opt Lett; 2016 Dec; 41(23):5470-5473. PubMed ID: 27906215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tunable, omnidirectional, and nearly perfect resonant absorptions by a graphene-hBN-based hole array metamaterial.
    Hajian H; Ghobadi A; Butun B; Ozbay E
    Opt Express; 2018 Jun; 26(13):16940-16954. PubMed ID: 30119512
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Method proposing a slow light ring resonator structure coupled with a metal-dielectric-metal waveguide system based on plasmonic induced transparency.
    Keleshtery MH; Kaatuzian H; Mir A; Zandi A
    Appl Opt; 2017 May; 56(15):4496-4504. PubMed ID: 29047882
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Excitation of plasmonic waves in graphene by guided-mode resonances.
    Gao W; Shu J; Qiu C; Xu Q
    ACS Nano; 2012 Sep; 6(9):7806-13. PubMed ID: 22862147
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comb-Shaped Graphene Nanoribbon Bandpass Filter.
    Deng G; Zhao T; Yin Z; Li Y; Yang J
    J Nanosci Nanotechnol; 2020 Dec; 20(12):7577-7582. PubMed ID: 32711629
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Confined surface plasmon of fundamental wave and second harmonic waves in graphene nanoribbon arrays.
    Zhou R; Yang S; Liu D; Cao G
    Opt Express; 2017 Dec; 25(25):31478-31491. PubMed ID: 29245823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures.
    Deng B; Guo Q; Li C; Wang H; Ling X; Farmer DB; Han SJ; Kong J; Xia F
    ACS Nano; 2016 Dec; 10(12):11172-11178. PubMed ID: 28024379
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tunable plasmon-induced transparency in hybrid waveguide-magnetic resonance system.
    Song J; Song Y; Li K; Zhang Z; Wei X; Xu Y; Song G
    Appl Opt; 2015 Mar; 54(9):2279-82. PubMed ID: 25968511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmon-induced transparency in metal-insulator-metal waveguide side-coupled with multiple cavities.
    Guo J
    Appl Opt; 2014 Mar; 53(8):1604-9. PubMed ID: 24663417
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial.
    Ling Y; Huang L; Hong W; Liu T; Luan J; Liu W; Lai J; Li H
    Nanoscale; 2018 Nov; 10(41):19517-19523. PubMed ID: 30320322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Near-infrared absorption-induced switching effect via guided mode resonances in a graphene-based metamaterial.
    Qing YM; Ma HF; Ren YZ; Yu S; Cui TJ
    Opt Express; 2019 Feb; 27(4):5253-5263. PubMed ID: 30876126
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultracompact electro-optic waveguide modulator based on a graphene-covered λ/1000 plasmonic nanogap.
    Kim S; Menabde SG; Cox JD; Low T; Jang MS
    Opt Express; 2021 Apr; 29(9):13852-13863. PubMed ID: 33985113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tunable Multi-switching in Plasmonic Waveguide with Kerr Nonlinear Resonator.
    He Z; Li H; Zhan S; Li B; Chen Z; Xu H
    Sci Rep; 2015 Oct; 5():15837. PubMed ID: 26510949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toward integrated electrically controllable directional coupling based on dielectric loaded graphene plasmonic waveguide.
    Xu W; Zhu ZH; Liu K; Zhang JF; Yuan XD; Lu QS; Qin SQ
    Opt Lett; 2015 Apr; 40(7):1603-6. PubMed ID: 25831395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tunable plasmonically induced transparency with giant group delay in gain-assisted graphene metamaterials.
    Zeng Y; Ling ZX; Liu GD; Wang LL; Lin Q
    Opt Express; 2022 Apr; 30(9):14103-14111. PubMed ID: 35473161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.