These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 29216095)

  • 1. Absorption measurements in optical coatings by lock-in thermography.
    Liu F; Gallais L
    Appl Opt; 2017 Nov; 56(33):9225-9232. PubMed ID: 29216095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multipass lock-in thermography for the study of optical coating absorption.
    Petite C; Marcouillé R; Moreau A; Krol H; Grèzes-Besset C; Lumeau J; Gallais L
    Appl Opt; 2022 Feb; 61(4):978-988. PubMed ID: 35201072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous mapping of reflectance, transmittance and optical loss of highly reflective and anti-reflective coatings with two-channel cavity ring-down technique.
    Cui H; Li B; Xiao S; Han Y; Wang J; Gao C; Wang Y
    Opt Express; 2017 Mar; 25(5):5807-5820. PubMed ID: 28380839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous absorption, scattering, and luminescence mappings for the characterization of optical coatings and surfaces.
    Gallais L; Commandré M
    Appl Opt; 2006 Mar; 45(7):1416-24. PubMed ID: 16539244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the absorption uniformity of optical thin films based on the photothermal detuning technique.
    Hao H; Zhou A; Rao M
    Appl Opt; 2012 Oct; 51(28):6844-7. PubMed ID: 23033101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of low losses in optical thin films and materials.
    Mühlig C; Triebel W; Kufert S; Bublitz S
    Appl Opt; 2008 May; 47(13):C135-42. PubMed ID: 18449235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal diffusivity measurements of thin plates and filaments using lock-in thermography.
    Mendioroz A; Fuente-Dacal R; Apiñaniz E; Salazar A
    Rev Sci Instrum; 2009 Jul; 80(7):074904. PubMed ID: 19655974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photothermal self-phase-modulation technique for absorption measurements on high-reflective coatings.
    Steinlechner J; Jensen L; Krüger C; Lastzka N; Steinlechner S; Schnabel R
    Appl Opt; 2012 Mar; 51(8):1156-61. PubMed ID: 22410996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sizing the Depth and Width of Narrow Cracks in Real Parts by Laser-Spot Lock-In Thermography.
    Colom M; Rodríguez-Aseguinolaza J; Mendioroz A; Salazar A
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A lock-in thermal imaging setup for dermatological applications.
    Bonmarin M; Le Gal FA
    Skin Res Technol; 2015 Aug; 21(3):284-90. PubMed ID: 25087689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of quantitative defect characterization using pulse-phase and lock-in thermography.
    Maierhofer C; Röllig M; Krankenhagen R; Myrach P
    Appl Opt; 2016 Dec; 55(34):D76-D86. PubMed ID: 27958442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photothermal detuning for absorption measurement of optical coatings.
    Hao H; Li B
    Appl Opt; 2008 Jan; 47(2):188-94. PubMed ID: 18188200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined laser calorimetry and photothermal technique for absorption measurement of optical coatings.
    Li B; Blaschke H; Ristau D
    Appl Opt; 2006 Aug; 45(23):5827-31. PubMed ID: 16926868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Measurement of the In-Plane Thermal Diffusivity of Semitransparent Thin Films by Lock-In Thermography: An Extension of the Slopes Method.
    Philipp A; Pech-May NW; Kopera BAF; Lechner AM; Rosenfeldt S; Retsch M
    Anal Chem; 2019 Jul; 91(13):8476-8483. PubMed ID: 31148451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Defect Localization on Exothermic Faults within Multi-Layered Structures Using Lock-In Thermography: An Experimental and Numerical Approach.
    Bae JY; Lee KS; Hur H; Nam KH; Hong SJ; Lee AY; Chang KS; Kim GH; Kim G
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29027955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mid-infrared interference coatings with excess optical loss below 10 ppm.
    Winkler G; Perner LW; Truong GW; Zhao G; Bachmann D; Mayer AS; Fellinger J; Follman D; Heu P; Deutsch C; Bailey DM; Peelaers H; Puchegger S; Fleisher AJ; Cole GD; Heckl OH
    Optica; 2021; 8(5):. PubMed ID: 36578655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method.
    Herbelin JM; McKay JA; Kwok MA; Ueunten RH; Urevig DS; Spencer DJ; Benard DJ
    Appl Opt; 1980 Jan; 19(1):144-7. PubMed ID: 20216808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single frequency thermal wave radar: A next-generation dynamic thermography for quantitative non-destructive imaging over wide modulation frequency ranges.
    Melnikov A; Chen L; Ramirez Venegas D; Sivagurunathan K; Sun Q; Mandelis A; Rodriguez IR
    Rev Sci Instrum; 2018 Apr; 89(4):044901. PubMed ID: 29716337
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.