These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 29216115)

  • 41. Efficient femtosecond optical parametric oscillator with dual-wavelength operation.
    Xu L; Zhong X; Zhu J; Han H; Wei Z
    Opt Lett; 2012 May; 37(9):1436-8. PubMed ID: 22555696
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wavelength conversion of 544-Gbit/s dual-carrier PDM-16QAM signal based on the co-polarized dual-pump scheme.
    Li X; Yu J; Dong Z; Chi N
    Opt Express; 2012 Sep; 20(19):21324-30. PubMed ID: 23037255
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Four-wave-mixing-based wavelength conversion using a single-walled carbon-nanotube-deposited planar lightwave circuit waveguide.
    Chow KK; Yamashita S; Set SY
    Opt Lett; 2010 Jun; 35(12):2070-2. PubMed ID: 20548389
    [TBL] [Abstract][Full Text] [Related]  

  • 44. From classical four-wave mixing to parametric fluorescence in silicon microring resonators.
    Azzini S; Grassani D; Galli M; Andreani LC; Sorel M; Strain MJ; Helt LG; Sipe JE; Liscidini M; Bajoni D
    Opt Lett; 2012 Sep; 37(18):3807-9. PubMed ID: 23041866
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly efficient generation of broadband cascaded four-wave mixing products.
    Cerqueira S A; Boggio JM; Rieznik AA; Hernandez-Figueroa HE; Fragnito HL; Knight JC
    Opt Express; 2008 Feb; 16(4):2816-28. PubMed ID: 18542366
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low-power continuous-wave four-wave mixing wavelength conversion in AlGaAs-nanowaveguide microresonators.
    Kultavewuti P; Pusino V; Sorel M; Stewart Aitchison J
    Opt Lett; 2015 Jul; 40(13):3029-32. PubMed ID: 26125359
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Experimental demonstration of nonlinear enhancement in a graphene-deposited microfiber.
    Tu Z; Jin Q; Bai H; Wang X; Gao S
    Appl Opt; 2017 Jun; 56(18):5242-5247. PubMed ID: 29047577
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultrawide-range four-wave mixing in Raman distributed-feedback fiber lasers.
    Shi J; Alam SU; Ibsen M
    Opt Lett; 2013 Mar; 38(6):944-6. PubMed ID: 23503268
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Graphene-enhanced polarization-insensitive all-optical wavelength conversion based on four-wave mixing.
    Yang Y; Duan M; Lin J; Wang Z; Wang K; Ji J; Song Y
    Opt Express; 2022 Mar; 30(6):10168-10177. PubMed ID: 35299426
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficient second-harmonic generation using a semiconductor tapered amplifier in a coupled ring-resonator geometry.
    Skoczowsky D; Jechow A; Menzel R; Paschke K; Erbert G
    Opt Lett; 2010 Jan; 35(2):232-4. PubMed ID: 20081978
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of four-wave mixing in short- and medium-range 1310  nm dense wavelength division multiplexing systems.
    Markowski K; Chorchos Ł; Turkiewicz JP
    Appl Opt; 2016 Apr; 55(11):3051-7. PubMed ID: 27139874
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An efficient broad-band mid-wave IR fiber optic light source: design and performance simulation.
    Barh A; Ghosh S; Varshney RK; Pal BP
    Opt Express; 2013 Apr; 21(8):9547-55. PubMed ID: 23609665
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Low-power optical bistability in a free-standing silicon ring resonator.
    Sun P; Reano RM
    Opt Lett; 2010 Apr; 35(8):1124-6. PubMed ID: 20410940
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highly efficient four wave mixing in GaInP photonic crystal waveguides.
    Eckhouse V; Cestier I; Eisenstein G; Combrié S; Colman P; De Rossi A; Santagiustina M; Someda CG; Vadalà G
    Opt Lett; 2010 May; 35(9):1440-2. PubMed ID: 20436596
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Wavelength conversion by use of four-wave mixing in a novel optical loop configuration.
    Yu J; Jeppesen P
    Opt Lett; 2000 Mar; 25(6):393-5. PubMed ID: 18059890
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrically tunable high Q-factor micro-ring resonator based on blue phase liquid crystal cladding.
    Wang CT; Li YC; Yu JH; Wang CY; Tseng CW; Jau HC; Chen YJ; Lin TH
    Opt Express; 2014 Jul; 22(15):17776-81. PubMed ID: 25089398
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Low-loss pedestal Ta
    Sierra JH; Rangel RC; Samad RE; Vieira ND; Alayo MI; Carvalho DO
    Opt Express; 2019 Dec; 27(26):37516-37521. PubMed ID: 31878530
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stable and wavelength-tunable silicon-micro-ring-resonator based erbium-doped fiber laser.
    Yang LG; Yeh CH; Wong CY; Chow CW; Tseng FG; Tsang HK
    Opt Express; 2013 Feb; 21(3):2869-74. PubMed ID: 23481745
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Four-wave mixing in silicon coupled-cavity resonators with port-selective, orthogonal supermode excitation.
    Zeng X; Gentry CM; Popović MA
    Opt Lett; 2015 May; 40(9):2120-3. PubMed ID: 25927800
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Highly sensitive optical temperature sensor based on a SiN micro-ring resonator with liquid crystal cladding.
    Wang CT; Wang CY; Yu JH; Kuo IT; Tseng CW; Jau HC; Chen YJ; Lin TH
    Opt Express; 2016 Jan; 24(2):1002-7. PubMed ID: 26832482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.