These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 29216411)

  • 21. Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties.
    Lazar P; Zbořil R; Pumera M; Otyepka M
    Phys Chem Chem Phys; 2014 Jul; 16(27):14231-5. PubMed ID: 24912566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction of metal porphyrins with fullerene C60: a new insight.
    Liao MS; Watts JD; Huang MJ
    J Phys Chem B; 2007 May; 111(17):4374-82. PubMed ID: 17417891
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational studies on non-covalent interactions of carbon and boron fullerenes with graphene.
    Manna AK; Pati SK
    Chemphyschem; 2013 Jun; 14(9):1844-52. PubMed ID: 23616400
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries?
    Yu YX
    Phys Chem Chem Phys; 2013 Oct; 15(39):16819-27. PubMed ID: 24002442
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Boron doped defective graphene as a potential anode material for Li-ion batteries.
    Hardikar RP; Das D; Han SS; Lee KR; Singh AK
    Phys Chem Chem Phys; 2014 Aug; 16(31):16502-8. PubMed ID: 24986702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical investigation of pillar[4]quinone as a cathode active material for lithium-ion batteries.
    Huan L; Xie J; Chen M; Diao G; Zhao R; Zuo T
    J Mol Model; 2017 Apr; 23(4):105. PubMed ID: 28271285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. First-Principles Density Functional Theory Modeling of Li Binding: Thermodynamics and Redox Properties of Quinone Derivatives for Lithium-Ion Batteries.
    Kim KC; Liu T; Lee SW; Jang SS
    J Am Chem Soc; 2016 Feb; 138(7):2374-82. PubMed ID: 26824616
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of hydrogen-edged boron nitride flakes with lithium: boron nitride as a protecting layer for a lithium-ion battery and a spin-dependent photon emission device.
    Kheirabadi N; Shafiekhani A
    Nanotechnology; 2021 Apr; 32(18):180001. PubMed ID: 33498019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. First-Principles Study of Lithium Borocarbide as a Cathode Material for Rechargeable Li ion Batteries.
    Xu Q; Ban C; Dillon AC; Wei SH; Zhao Y
    J Phys Chem Lett; 2011 May; 2(10):1129-32. PubMed ID: 26295314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Doping of C60 fullerene peapods with lithium vapor: Raman spectroscopic and spectroelectrochemical studies.
    Kalbác M; Kavan L; Zukalová M; Dunsch L
    Chemistry; 2008; 14(20):6231-6. PubMed ID: 18512827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of DFT-based machine learning for developing molecular electrode materials in Li-ion batteries.
    Allam O; Cho BW; Kim KC; Jang SS
    RSC Adv; 2018 Nov; 8(69):39414-39420. PubMed ID: 35558035
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular Design Strategy for High-Redox-Potential and Poorly Soluble n-Type Phenazine Derivatives as Cathode Materials for Lithium Batteries.
    Miao L; Liu L; Zhang K; Chen J
    ChemSusChem; 2020 May; 13(9):2337-2344. PubMed ID: 31968154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Construction of a zinc porphyrin-fullerene-derivative based nonenzymatic electrochemical sensor for sensitive sensing of hydrogen peroxide and nitrite.
    Wu H; Fan S; Jin X; Zhang H; Chen H; Dai Z; Zou X
    Anal Chem; 2014 Jul; 86(13):6285-90. PubMed ID: 24918264
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pyrenetetrone Derivatives Tailored by Nitrogen Dopants for High-Potential Cathodes in Lithium-Ion Batteries.
    Go CY; Jeong GS; Kim KC
    iScience; 2019 Nov; 21():206-216. PubMed ID: 31671332
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polymer composite electrolytes having core-shell silica fillers with anion-trapping boron moiety in the shell layer for all-solid-state lithium-ion batteries.
    Shim J; Kim DG; Kim HJ; Lee JH; Lee JC
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7690-701. PubMed ID: 25805120
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A DFT study on the potential application of pristine, B and N doped carbon nanocones in potassium-ion batteries.
    Berenjaghi HM; Mansouri S; Beheshtian J
    J Mol Model; 2021 May; 27(6):168. PubMed ID: 33990863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Competitive Doping Chemistry for Nickel-Rich Layered Oxide Cathode Materials.
    Guo YJ; Zhang CH; Xin S; Shi JL; Wang WP; Fan M; Chang YX; He WH; Wang E; Zou YG; Yang X; Meng F; Zhang YY; Lei ZQ; Yin YX; Guo YG
    Angew Chem Int Ed Engl; 2022 May; 61(21):e202116865. PubMed ID: 35132759
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural and electronic properties of S-doped fullerene C58: where is the S atom situated?
    Ren XY; Liu ZY
    J Chem Phys; 2005 Jan; 122(3):34306. PubMed ID: 15740200
    [TBL] [Abstract][Full Text] [Related]  

  • 39. B80 fullerene: an Ab initio prediction of geometry, stability, and electronic structure.
    Gonzalez Szwacki N; Sadrzadeh A; Yakobson BI
    Phys Rev Lett; 2007 Apr; 98(16):166804. PubMed ID: 17501448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulating stability of functionalized fullerene cations [R-C
    Li J; Tadakamalla D; Rogachev AY
    J Comput Chem; 2018 Oct; 39(28):2385-2396. PubMed ID: 30306575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.