BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

485 related articles for article (PubMed ID: 29216451)

  • 21. A mechanosensory feedback that uncouples external and self-generated sensory responses in the olfactory cortex.
    A Dehaqani A; Michelon F; Patella P; Petrucco L; Piasini E; Iurilli G
    Cell Rep; 2024 Apr; 43(4):114013. PubMed ID: 38551962
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sniff Invariant Odor Coding.
    Shusterman R; Sirotin YB; Smear MC; Ahmadian Y; Rinberg D
    eNeuro; 2018; 5(6):. PubMed ID: 30627641
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Testing the sorption hypothesis in olfaction: a limited role for sniff strength in shaping primary odor representations during behavior.
    Cenier T; McGann JP; Tsuno Y; Verhagen JV; Wachowiak M
    J Neurosci; 2013 Jan; 33(1):79-92. PubMed ID: 23283324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity.
    Friedrich RW; Laurent G
    Science; 2001 Feb; 291(5505):889-94. PubMed ID: 11157170
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recurrent cortical circuits implement concentration-invariant odor coding.
    Bolding KA; Franks KM
    Science; 2018 Sep; 361(6407):. PubMed ID: 30213885
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synchronized oscillatory discharges of mitral/tufted cells with different molecular receptive ranges in the rabbit olfactory bulb.
    Kashiwadani H; Sasaki YF; Uchida N; Mori K
    J Neurophysiol; 1999 Oct; 82(4):1786-92. PubMed ID: 10515968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The sniff as a unit of olfactory processing.
    Kepecs A; Uchida N; Mainen ZF
    Chem Senses; 2006 Feb; 31(2):167-79. PubMed ID: 16339265
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Odor response properties of neighboring mitral/tufted cells in the rat olfactory bulb.
    EgaƱa JI; Aylwin ML; Maldonado PE
    Neuroscience; 2005; 134(3):1069-80. PubMed ID: 15994017
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coding of odor molecules by mitral/tufted cells in rabbit olfactory bulb. II. Aromatic compounds.
    Katoh K; Koshimoto H; Tani A; Mori K
    J Neurophysiol; 1993 Nov; 70(5):2161-75. PubMed ID: 8294977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Odor representations in the mammalian olfactory bulb.
    Khan AG; Parthasarathy K; Bhalla US
    Wiley Interdiscip Rev Syst Biol Med; 2010; 2(5):603-611. PubMed ID: 20836051
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retronasal odor representations in the dorsal olfactory bulb of rats.
    Gautam SH; Verhagen JV
    J Neurosci; 2012 Jun; 32(23):7949-59. PubMed ID: 22674270
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A systems perspective on early olfactory coding.
    Laurent G
    Science; 1999 Oct; 286(5440):723-8. PubMed ID: 10531051
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temporal Dynamics of Inhalation-Linked Activity across Defined Subpopulations of Mouse Olfactory Bulb Neurons Imaged
    Short SM; Wachowiak M
    eNeuro; 2019; 6(3):. PubMed ID: 31209151
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Discrimination among odorants by single neurons of the rat olfactory bulb.
    Wellis DP; Scott JW; Harrison TA
    J Neurophysiol; 1989 Jun; 61(6):1161-77. PubMed ID: 2746317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional transformations of odor inputs in the mouse olfactory bulb.
    Adam Y; Livneh Y; Miyamichi K; Groysman M; Luo L; Mizrahi A
    Front Neural Circuits; 2014; 8():129. PubMed ID: 25408637
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sniff rhythm-paced fast and slow gamma-oscillations in the olfactory bulb: relation to tufted and mitral cells and behavioral states.
    Manabe H; Mori K
    J Neurophysiol; 2013 Oct; 110(7):1593-9. PubMed ID: 23864376
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-frequency oscillations are not necessary for simple olfactory discriminations in young rats.
    Fletcher ML; Smith AM; Best AR; Wilson DA
    J Neurosci; 2005 Jan; 25(4):792-8. PubMed ID: 15673658
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A spiking neural network model of self-organized pattern recognition in the early mammalian olfactory system.
    Kaplan BA; Lansner A
    Front Neural Circuits; 2014; 8():5. PubMed ID: 24570657
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Postnatal Odor Exposure Increases the Strength of Interglomerular Lateral Inhibition onto Olfactory Bulb Tufted Cells.
    Geramita M; Urban NN
    J Neurosci; 2016 Dec; 36(49):12321-12327. PubMed ID: 27927952
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Similarity and Strength of Glomerular Odor Representations Define a Neural Metric of Sniff-Invariant Discrimination Time.
    Bhattacharjee AS; Konakamchi S; Turaev D; Vincis R; Nunes D; Dingankar AA; Spors H; Carleton A; Kuner T; Abraham NM
    Cell Rep; 2019 Sep; 28(11):2966-2978.e5. PubMed ID: 31509755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.