BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 29216550)

  • 1. Response surface methodology optimization for sorption of malachite green dye on sugarcane bagasse biochar and evaluating the residual dye for phyto and cytogenotoxicity.
    Vyavahare GD; Gurav RG; Jadhav PP; Patil RR; Aware CB; Jadhav JP
    Chemosphere; 2018 Mar; 194():306-315. PubMed ID: 29216550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption of brilliant green dye using soybean straw-derived biochar: characterization, kinetics, thermodynamics and toxicity studies.
    Vyavahare G; Gurav R; Patil R; Sutar S; Jadhav P; Patil D; Yang YH; Tang J; Chavan C; Kale S; Jadhav J
    Environ Geochem Health; 2021 Aug; 43(8):2913-2926. PubMed ID: 33433782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel biochar from Manihot esculenta Crantz waste: application for the removal of Malachite Green from wastewater and optimization of the adsorption process.
    Beakou BH; El Hassani K; Houssaini MA; Belbahloul M; Oukani E; Anouar A
    Water Sci Technol; 2017 Sep; 76(5-6):1447-1456. PubMed ID: 28953471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decolourization of malachite green dye by mentha plant biochar (MPB): a combined action of adsorption and electrochemical reduction processes.
    Rawat AP; Singh DP
    Water Sci Technol; 2018 Mar; 77(5-6):1734-1743. PubMed ID: 29595176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of pozzolan and sugarcane bagasse derived geopolymer-biochar composites for methylene blue sequestration from aqueous medium.
    Dzoujo HT; Shikuku VO; Tome S; Akiri S; Kengne NM; Abdpour S; Janiak C; Etoh MA; Dina D
    J Environ Manage; 2022 Sep; 318():115533. PubMed ID: 35949096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of iron oxides impregnated green adsorbent from sugarcane bagasse: Characterization and evaluation of adsorption efficiency.
    Buthiyappan A; Gopalan J; Abdul Raman AA
    J Environ Manage; 2019 Nov; 249():109323. PubMed ID: 31400589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of macroalgal biomass derived biochar and bioelectrochemical system with Shewanella for the adsorptive removal and biodegradation of toxic azo dye.
    Gurav R; Bhatia SK; Choi TR; Choi YK; Kim HJ; Song HS; Lee SM; Lee Park S; Lee HS; Koh J; Jeon JM; Yoon JJ; Yang YH
    Chemosphere; 2021 Feb; 264(Pt 2):128539. PubMed ID: 33059279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(methacrylic acid)-modified sugarcane bagasse for enhanced adsorption of cationic dye.
    Xing Y; Wang G
    Environ Technol; 2009 May; 30(6):611-9. PubMed ID: 19603706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective sorption of atrazine by biochar colloids and residues derived from different pyrolysis temperatures.
    Yang F; Gao Y; Sun L; Zhang S; Li J; Zhang Y
    Environ Sci Pollut Res Int; 2018 Jul; 25(19):18528-18539. PubMed ID: 29700748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment of malachite green dye containing solution using bio-degradable Sodium alginate/NaOH treated activated sugarcane baggsse charcoal beads: Batch, optimization using response surface methodology and continuous fixed bed column study.
    Das L; Das P; Bhowal A; Bhattachariee C
    J Environ Manage; 2020 Dec; 276():111272. PubMed ID: 32871466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochar-Mediated Zirconium Ferrite Nanocomposites for Tartrazine Dye Removal from Textile Wastewater.
    Perveen S; Nadeem R; Nosheen F; Asjad MI; Awrejcewicz J; Anwar T
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of malachite green and mixed dyes from aqueous and textile effluents using acclimatized and sonicated microalgal (
    Getachew D; Suresh A; Kamaraj M; Ayele A; Benor S
    Int J Phytoremediation; 2022; 24(8):881-892. PubMed ID: 34618651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of artificial intelligence for optimizing biosorption of textile wastewater using agricultural waste.
    Aghilesh K; Kumar A; Agarwal S; Garg MC; Joshi H
    Environ Technol; 2023 Jan; 44(1):22-34. PubMed ID: 34319862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustainable conversion of textile industry cotton waste into P-dopped biochar for removal of dyes from textile effluent and valorisation of spent biochar into soil conditioner towards circular economy.
    Kar S; Santra B; Kumar S; Ghosh S; Majumdar S
    Environ Pollut; 2022 Nov; 312():120056. PubMed ID: 36049578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars.
    Ding W; Dong X; Ime IM; Gao B; Ma LQ
    Chemosphere; 2014 Jun; 105():68-74. PubMed ID: 24393563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sono-assisted adsorption of a textile dye on milk vetch-derived charcoal supported by silica nanopowder.
    Jorfi S; Darvishi Cheshmeh Soltani R; Ahmadi M; Khataee A; Safari M
    J Environ Manage; 2017 Feb; 187():111-121. PubMed ID: 27888712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning approaches for the treatment of textile wastewater using sugarcane bagasse (Saccharum officinarum) biochar.
    Kumari S; Chowdhry J; Choudhury A; Agarwal S; Narad P; Garg MC
    Environ Sci Pollut Res Int; 2024 Jan; ():. PubMed ID: 38227254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical optimization of textile dye effluent adsorption by
    Venkataraghavan R; Thiruchelvi R; Sharmila D
    Heliyon; 2020 Oct; 6(10):e05219. PubMed ID: 33088969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved removal of malachite green from aqueous solution using chemically modified cellulose by anhydride.
    Zhou Y; Min Y; Qiao H; Huang Q; Wang E; Ma T
    Int J Biol Macromol; 2015 Mar; 74():271-7. PubMed ID: 25542168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption-biodegradation coupled remediation process for the efficient removal of a textile dye through chemically functionalized sugarcane bagasse.
    Gita S; Shukla SP; Deshmukhe G; Singh AR; Choudhury TG; Singh AK
    Water Environ Res; 2021 Oct; 93(10):2223-2236. PubMed ID: 34076310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.