These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 2921771)

  • 1. Extracellular matrix of sea urchin and other marine invertebrate embryos.
    Spiegel E; Howard L; Spiegel M
    J Morphol; 1989 Jan; 199(1):71-92. PubMed ID: 2921771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An N-linked carbohydrate-containing extracellular matrix determinant plays a key role in sea urchin gastrulation.
    Ingersoll EP; Ettensohn CA
    Dev Biol; 1994 Jun; 163(2):351-66. PubMed ID: 7515360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preservation and visualization of the sea urchin embryo blastocoelic extracellular matrix.
    Cherr GN; Summers RG; Baldwin JD; Morrill JB
    Microsc Res Tech; 1992 Jun; 22(1):11-22. PubMed ID: 1617206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network structure in the blastocoel of developing sea urchin embryos.
    Amemiya S
    Prog Clin Biol Res; 1986; 217B():187-90. PubMed ID: 3749175
    [No Abstract]   [Full Text] [Related]  

  • 5. Ultrastructural study of the hyaline layer of the starfish embryo, Pisaster ochraceus.
    Campbell SS; Crawford BJ
    Anat Rec; 1991 Sep; 231(1):125-35. PubMed ID: 1721506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-substrate interactions during sea urchin gastrulation: migrating primary mesenchyme cells interact with and align extracellular matrix fibers that contain ECM3, a molecule with NG2-like and multiple calcium-binding domains.
    Hodor PG; Illies MR; Broadley S; Ettensohn CA
    Dev Biol; 2000 Jun; 222(1):181-94. PubMed ID: 10885756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ectoderm cell--ECM interaction is essential for sea urchin embryo skeletogenesis.
    Zito F; Tesoro V; McClay DR; Nakano E; Matranga V
    Dev Biol; 1998 Apr; 196(2):184-92. PubMed ID: 9576831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pamlin, a primary mesenchyme cell adhesion protein, in the basal lamina of the sea urchin embryo.
    Katow H
    Exp Cell Res; 1995 Jun; 218(2):469-78. PubMed ID: 7796882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructure and synthesis of the extracellular matrix of Pisaster ochraceus embryos preserved by freeze substitution.
    Crawford BJ; Campbell SS; Reimer CL
    J Morphol; 1997 May; 232(2):133-53. PubMed ID: 9097465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. alphaSU2, an epithelial integrin that binds laminin in the sea urchin embryo.
    Hertzler PL; McClay DR
    Dev Biol; 1999 Mar; 207(1):1-13. PubMed ID: 10049560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The localization of occluded matrix proteins in calcareous spicules of sea urchin larvae.
    Seto J; Zhang Y; Hamilton P; Wilt F
    J Struct Biol; 2004 Oct; 148(1):123-30. PubMed ID: 15363792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two distinct forms of USF in the Lytechinus sea urchin embryo do not play a role in LpS1 gene inactivation upon disruption of the extracellular matrix.
    George JM; Seid CA; Lee H; Tomlinson CR
    Mol Reprod Dev; 1996 Sep; 45(1):1-9. PubMed ID: 8873063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional regulation of the gene for epidermal growth factor-like peptides in sea urchin embryos.
    Yamasu K; Suzuki G; Horii K; Suyemitsu T
    Int J Dev Biol; 2000 Oct; 44(7):777-84. PubMed ID: 11128571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spicule matrix protein LSM34 is essential for biomineralization of the sea urchin spicule.
    Peled-Kamar M; Hamilton P; Wilt FH
    Exp Cell Res; 2002 Jan; 272(1):56-61. PubMed ID: 11740865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An extracellular matrix molecule that is selectively expressed during development is important for gastrulation in the sea urchin embryo.
    Berg LK; Chen SW; Wessel GM
    Development; 1996 Feb; 122(2):703-13. PubMed ID: 8625821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructural studies of regenerating spines of the sea urchin Strongylocentrotus purpuratus. I. Cell types without spherules.
    Heatfield BM; Travis DF
    J Morphol; 1975 Jan; 145(1):13-49. PubMed ID: 1111423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Matrix and mineral in the sea urchin larval skeleton.
    Wilt FH
    J Struct Biol; 1999 Jun; 126(3):216-26. PubMed ID: 10475684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructural aspects of the development of the hyaline layer and extracellular matrix lining the gastrointestinal tract in embryos and larvae of the starfish Pisaster ochraceus preserved by freeze substitution.
    Pang T; Crawford BJ; Campbell SS
    J Morphol; 2002 Feb; 251(2):169-81. PubMed ID: 11748701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary mesenchyme cell migration in the sea urchin embryo: distribution of directional cues.
    Malinda KM; Ettensohn CA
    Dev Biol; 1994 Aug; 164(2):562-78. PubMed ID: 8045352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurements of mechanical properties of the blastula wall reveal which hypothesized mechanisms of primary invagination are physically plausible in the sea urchin Strongylocentrotus purpuratus.
    Davidson LA; Oster GF; Keller RE; Koehl MA
    Dev Biol; 1999 May; 209(2):221-38. PubMed ID: 10328917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.