These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29218033)

  • 21. Marine Microbial Gene Abundance and Community Composition in Response to Ocean Acidification and Elevated Temperature in Two Contrasting Coastal Marine Sediments.
    Currie AR; Tait K; Parry H; de Francisco-Mora B; Hicks N; Osborn AM; Widdicombe S; Stahl H
    Front Microbiol; 2017; 8():1599. PubMed ID: 28878754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of a transient perturbation on marine bacterial communities with contrasting history.
    Zemb O; West N; Bourrain M; Godon JJ; Lebaron P
    J Appl Microbiol; 2010 Sep; 109(3):751-62. PubMed ID: 20337764
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative Physiology of Non-Energy-Limited Retentostat Cultures of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates.
    Liu Y; El Masoudi A; Pronk JT; van Gulik WM
    Appl Environ Microbiol; 2019 Oct; 85(20):. PubMed ID: 31375494
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shifts in microbial trophic strategy explain different temperature sensitivity of CO2 flux under constant and diurnally varying temperature regimes.
    Bai Z; Xie H; Kao-Kniffin J; Chen B; Shao P; Liang C
    FEMS Microbiol Ecol; 2017 May; 93(5):. PubMed ID: 28499007
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Warming and CO
    Vaqué D; Lara E; Arrieta JM; Holding J; Sà EL; Hendriks IE; Coello-Camba A; Alvarez M; Agustí S; Wassmann PF; Duarte CM
    Front Microbiol; 2019; 10():494. PubMed ID: 30949141
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal Acclimation of Respiration and Photosynthesis in the Marine Macroalga Gracilaria lemaneiformis (Gracilariales, Rhodophyta).
    Zou D; Gao K
    J Phycol; 2013 Feb; 49(1):61-8. PubMed ID: 27008389
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elevated pCO2 enhances bacterioplankton removal of organic carbon.
    James AK; Passow U; Brzezinski MA; Parsons RJ; Trapani JN; Carlson CA
    PLoS One; 2017; 12(3):e0173145. PubMed ID: 28257422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The sensitivity of soil microbial respiration declined due to crop straw addition but did not depend on the type of crop straw.
    Chen S; Wu J
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):30167-30176. PubMed ID: 31420839
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon quality and soil microbial property control the latitudinal pattern in temperature sensitivity of soil microbial respiration across Chinese forest ecosystems.
    Wang Q; Liu S; Tian P
    Glob Chang Biol; 2018 Jul; 24(7):2841-2849. PubMed ID: 29476638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial Community Response to Terrestrially Derived Dissolved Organic Matter in the Coastal Arctic.
    Sipler RE; Kellogg CTE; Connelly TL; Roberts QN; Yager PL; Bronk DA
    Front Microbiol; 2017; 8():1018. PubMed ID: 28649233
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glucose triggers strong taxon-specific responses in microbial growth and activity: insights from DNA and RNA qSIP.
    Papp K; Hungate BA; Schwartz E
    Ecology; 2020 Jan; 101(1):e02887. PubMed ID: 31502670
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates.
    Pietikäinen J; Pettersson M; Bååth E
    FEMS Microbiol Ecol; 2005 Mar; 52(1):49-58. PubMed ID: 16329892
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulated nitrogen deposition significantly reduces soil respiration in an evergreen broadleaf forest in western China.
    Zhou S; Xiang Y; Tie L; Han B; Huang C
    PLoS One; 2018; 13(9):e0204661. PubMed ID: 30261036
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon fluxes acclimate more strongly to elevated growth temperatures than to elevated CO2 concentrations in a northern conifer.
    Kroner Y; Way DA
    Glob Chang Biol; 2016 Aug; 22(8):2913-28. PubMed ID: 26728638
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Element content of Ochromonas danica: a replicated chemostat study controlling the growth rate and temperature.
    Simonds S; Grover JP; Chrzanowski TH
    FEMS Microbiol Ecol; 2010 Nov; 74(2):346-52. PubMed ID: 21039649
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of growth rate and nutrient limitation on the microbial composition and biochemical properties of a mixed culture of oral bacteria grown in a chemostat.
    Marsh PD; Hunter JR; Bowden GH; Hamilton IR; McKee AS; Hardie JM; Ellwood DC
    J Gen Microbiol; 1983 Mar; 129(3):755-70. PubMed ID: 6348208
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compensatory responses of CO
    Callaway RM; DeLucia EH; Thomas EM; Schlesinger WH
    Oecologia; 1994 Jul; 98(2):159-166. PubMed ID: 28313973
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resource limitation of bacterial production distorts the temperature dependence of oceanic carbon cycling.
    López-Urrutia A; Morán XA
    Ecology; 2007 Apr; 88(4):817-22. PubMed ID: 17536698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Effects of Nutrient Imbalances and Temperature on the Biomass Stoichiometry of Freshwater Bacteria.
    Phillips KN; Godwin CM; Cotner JB
    Front Microbiol; 2017; 8():1692. PubMed ID: 28943865
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature effects on seaweed-sustaining top-down control vary with season.
    Werner FJ; Graiff A; Matthiessen B
    Oecologia; 2016 Mar; 180(3):889-901. PubMed ID: 26566809
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.